Model-Based Clustering and Classification for Longitudinal Data
Carries out model-based clustering or classification using multivariate t or Gaussian mixture models with Cholesky decomposed covariance structure. EM algorithms are used for parameter estimation and the BIC is used for model selection.
longclustEM(x, Gmin, Gmax, class=NULL, linearMeans = FALSE, modelSubset = NULL, initWithKMeans = FALSE, criteria = "BIC", equalDF = FALSE, gaussian=FALSE, userseed=1004)
x |
A matrix or data frame such that rows correspond to observations and columns correspond to variables. |
Gmin |
A number giving the minimum number of components to be used. |
Gmax |
A number giving the maximum number of components to be used. |
class |
If |
linearMeans |
If TRUE, then means are modelled using linear models. |
modelSubset |
A vector of strings giving the models to be used. If set to NULL, all models are used. |
initWithKMeans |
If TRUE, the components are initialized using k-means algorithm. |
criteria |
A string that denotes the criteria used for evaluating the models. Its value should be "BIC" or "ICL". |
equalDF |
If TRUE, the degrees of freedom of all the components will be the same. |
gaussian |
If TRUE, a mixture of Gaussian distributions is used in place of a mixture of t-distributions. |
userseed |
The random number seed to be used. |
Gbest |
The number of components for the best model. |
zbest |
A matrix that gives the probabilities for any data element to belong to any component in the best model. |
nubest |
A vector of |
mubest |
A matrix containing the means of the components for the best model (one per row). |
Tbest |
A list of |
Dbest |
A list of |
Paul D. McNicholas, K. Raju Jampani and Sanjeena Subedi
Paul D. McNicholas and T. Brendan Murphy (2010). Model-based clustering of longitudinal data. The Canadian Journal of Statistics 38(1), 153-168.
Paul D. McNicholas and Sanjeena Subedi (2012). Clustering gene expression time course data using mixtures of multivariate t-distributions. Journal of Statistical Planning and Inference 142(5), 1114-1127.
library(mvtnorm) m1 <- c(23,34,39,45,51,56) S1 <- matrix(c(1.00, -0.90, 0.18, -0.13, 0.10, -0.05, -0.90, 1.31, -0.26, 0.18, -0.15, 0.07, 0.18, -0.26, 4.05, -2.84, 2.27, -1.13, -0.13, 0.18, -2.84, 2.29, -1.83, 0.91, 0.10, -0.15, 2.27, -1.83, 3.46, -1.73, -0.05, 0.07, -1.13, 0.91, -1.73, 1.57), 6, 6) m2 <- c(16,18,15,17,21,17) S2 <- matrix(c(1.00, 0.00, -0.50, -0.20, -0.20, 0.19, 0.00, 2.00, 0.00, -1.20, -0.80, -0.36,-0.50, 0.00, 1.25, 0.10, -0.10, -0.39, -0.20, -1.20, 0.10, 2.76, 0.52, -1.22,-0.20, -0.80, -0.10, 0.52, 1.40, 0.17, 0.19, -0.36, -0.39, -1.22, 0.17, 3.17), 6, 6) m3 <- c(8, 11, 16, 22, 25, 28) S3 <- matrix(c(1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, -0.20, -0.64, 0.26, 0.00, 0.00, -0.20, 1.04, -0.17, -0.10, 0.00, 0.00, -0.64, -0.17, 1.50, -0.65, 0.00, 0.00, 0.26, -0.10, -0.65, 1.32, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00), 6, 6) m4 <- c(12, 9, 8, 5, 4 ,2) S4 <- diag(c(1,1,1,1,1,1)) data <- matrix(0, 40, 6) data[1:10,] <- rmvnorm(10, m1, S1) data[11:20,] <- rmvnorm(10, m2, S2) data[21:30,] <- rmvnorm(10, m3, S3) data[31:40,] <- rmvnorm(10, m4, S4) clus <- longclustEM(data, 3, 5, linearMeans=TRUE) summary(clus) plot(clus,data)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.