~ Function: imputation ~
imputation
is a function that offer different methods to impute
missing value of a LongData
(or a matrix).
imputation(traj,method="copyMean",lowerBound="globalMin",upperBound="globalMax")
traj |
|
method |
|
lowerBound |
|
upperBound |
|
imputation
is a function that impute
missing value of a LongData
or a matrix
.
Several imputation methods are available. A brief description
follows. For a fully detailled description, see [3].
Illustrating examples showing strenghs and weakness of methods are presented section "examples".
For each method, the imputation has to deal with monotone missing value (at start and at end of the trajectories) and intermitant (in the middle). Here is a brief description of each methods.
'linearInterpol.locf' (linear interpolation, locf)
Intermitant: values imediatly surounding the missing are join by a line.
Monotone: imputed by 'locf' or 'nocb'.
'linearInterpol.global' (linear interpolation, global slope)
Intermitant: values imediatly surounding the missing are join by a line.
Monotone: the line joining the first and last non-missing value is considered (this line is the everage progression of the actual individual trajectoire). Missing-value at start and at end are chosen on this line.
'linearInterpol.local' (linear interpolation, global slope)
Intermitant: values imediatly surounding the missing are join by a line.
Monotone at start: the line joining the first and second non-missing value is considered. Missing-value at start are chose on this line.
Monotone at end: the line joining the last and penultimate non-missing value is considered. Missing-value at end are chosen on this line.
'linearInterpol.bisector' (linear interpolation, bisector)
Intermitant: values imediatly surounding the missing are join by a line.
Monotone: linearInterpol.global is not sensitive to local variation, linearInterpol.local might be too much sensitive to abnormal value. linearInterpol.bisector offer a medium solution by considering the bissectrice of Global and Local solution. Point are chosen on the bissectrices.
'copyMean.locf' (copy mean, locf) this method impute in two stages. First, it use 'linearInterpol.locf'. Then it add to each imputed value a variation that make the imputed value follow the shape of the average trajectory. For more details, see [3] and examples' section.
'copyMean.global' (copy mean, global slope) this method impute in two stages. First, it use 'linearInterpol.global'. Then it add to each imputed value a variation that make the imputed value follow the shape of the average trajectory. For more details, see [3] and examples' section.
'copyMean.local' (copy mean, local slope) this method impute in two stages. First, it use 'linearInterpol.local'. Then it add to each imputed value a variation that make the imputed value follow the shape of the average trajectory. For more details, see [3] and examples' section.
'copyMean.bisector' (copy mean, bisector) this method impute in two stages. First, it use 'linearInterpol.bisector'. Then it add to each imputed value a variation that make the imputed value follow the shape of the average trajectory. For more details, see [3] and examples' section.
locf (Last Occurence Carried Forward) THIS METHOD HAS BEEN PROUVEN TO NOT BE EFFICIANT SEVERAL TIME BY VARIOUS AUTHOR, we strongly recommand to not use it !
Intermitant and monotone at end: the previous non-missing value is dipplicated forward.
Monotone at start: the first non-missing value is dupplicated backward (nocb).
nocb (Next Occurence Carried Backward) THIS METHOD HAS BEEN PROUVEN TO NOT BE EFFICIANT SEVERAL TIME BY VARIOUS AUTHOR, we strongly recommand to not use it !
Intermitant and monotone at start: the next non-missing value is dipplicated backward.
Monotone at end: the last non-missing value is dupplicated forward (locf).
trajMean missing are imputed by the mean of the trajectory.
trajMedian missing are imputed by the median of the trajectory.
trajHotDeck each missing is imputed by one non-missing (randomly choosen) value of the trajectory.
crossMean missing value at time t are imputed by the mean of all value present at time t.
crossMedian missing value at time t are imputed by the median of all value present at time t.
crossHotDeck each missing value at time t is imputed by one non-missing (randomly choosen) value present at time t.
A LongData
or a matrix
with no missing values.
Christophe Genolini
1. UMR U1027, INSERM, Université Paul Sabatier / Toulouse III / France
2. CeRSME, EA 2931, UFR STAPS, Université de Paris Ouest-Nanterre-La Défense / Nanterre / France
[1] C. Genolini and B. Falissard
"KmL: k-means for longitudinal data"
Computational Statistics, vol 25(2), pp 317-328, 2010
[2] C. Genolini and B. Falissard
"KmL: A package to cluster longitudinal data"
Computer Methods and Programs in Biomedicine, 104, pp e112-121,
2011
[3] Christophe Genolini, René Écochard and Hélène Jacqmin-Gadda
"Copy Mean: A New Method to Impute Intermittent Missing Values in Longitudinal Studies"
Open Journal of Statistics, vol 3(26),2013
################## ### Preparation of the data par(ask=TRUE) timeV <- 1:14 matMissing <- matrix( c(NA ,NA ,NA ,18 ,22 ,NA ,NA ,NA ,NA , 24 , 22 , NA , NA , NA, 24 ,21 ,24 ,26 ,27 ,32 ,30 ,22 ,26 , 26 , 28 , 24 , 23 , 21, 14 ,13 , 10 , 8 , 7 ,18 ,16 , 8 ,12 , 6 , 10 , 10 , 9 , 7, 3 ,1 , 1 , 1 , 3,9 , 7 , -1 , 3 , 2 , 4 , 1 , 0 , -2 ),4,byrow=TRUE ) matplot(t(matMissing),col=c(2,1,1,1),lty=1,type="l",lwd=c(3,1,1,1),pch=16, xlab="Black=trajectories; Green=mean trajectory\nRed=trajectory to impute", ylab="",main="Four trajectories") moy <- apply(matMissing,2,mean,na.rm=TRUE) lines(moy,col=3,lwd=3) # # # # # # # # # # # # # # # # # # # # # # # # # # # Illustration of the different imputing method # # The best are at end !!! # # # # # # # # # # # # # # # # # # # # # # # # # # ################## ### Methods using cross sectionnal information (cross-methods) par(mfrow=c(1,3)) mat2 <- matrix(c( NA, 9, 8, 8, 7, 6,NA, 7, 6,NA,NA,NA, 4,5, 3, 4, 3,NA,NA, 2,3, NA,NA, 1,NA,NA, 1,1),4,7,byrow=TRUE) ### crossMean matplot(t(imputation(mat2,"crossMean")),type="l",ylim=c(0,10), lty=1,col=1,main="crossMean") matlines(t(mat2),type="o",col=2,lwd=3,pch=16,lty=1) ### crossMedian matplot(t(imputation(mat2,"crossMedian")),type="l",ylim=c(0,10), lty=1,col=1,main="crossMedian") matlines(t(mat2),type="o",col=2,lwd=3,pch=16,lty=1) ### crossHotDeck matplot(t(imputation(mat2,"crossHotDeck")),type="l",ylim=c(0,10), lty=1,col=1,main="crossHotDeck") matlines(t(mat2),type="o",col=2,lwd=3,pch=16,lty=1) ################## ### Methods using trajectory information (traj-methods) par(mfrow=c(2,3)) mat1 <- matrix(c(NA,NA,3,8,NA,NA,2,2,1,NA,NA),1,11) ### locf matplot(t(imputation(mat1,"locf")),type="l",ylim=c(0,10), main="locf\n DO NOT USE, BAD METHOD !!!") matlines(t(mat1),type="o",col=2,lwd=3,pch=16) ### nocb matplot(t(imputation(mat1,"nocb")),type="l",ylim=c(0,10), main="nocb\n DO NOT USE, BAD METHOD !!!") matlines(t(mat1),type="o",col=2,lwd=3,pch=16) ### trajMean matplot(t(imputation(mat1,"trajMean")),type="l",ylim=c(0,10), main="trajMean") matlines(t(mat1),type="o",col=2,lwd=3,pch=16) ### trajMedian matplot(t(imputation(mat1,"trajMedian")),type="l",ylim=c(0,10), main="trajMedian") matlines(t(mat1),type="o",col=2,lwd=3,pch=16) ### trajHotDeck matplot(t(imputation(mat1,"trajHotDeck")),type="l",ylim=c(0,10), main="trajHotDeck 1") matlines(t(mat1),type="o",col=2,lwd=3,pch=16) ### spline matplot(t(imputation(mat1,"spline",lowerBound=NA,upperBound=NA)), type="l",ylim=c(-10,10),main="spline") matlines(t(mat1),type="o",col=2,lwd=3,pch=16) ################## ### Different linear interpolation par(mfrow=c(2,2)) ### linearInterpol.locf matplot(t(imputation(mat1,"linearInterpol.locf",NA,NA)),type="l", ylim=c(-5,10),lty=1,col=1,main="linearInterpol.locf") matlines(t(mat1),type="o",col=2,lwd=3,pch=16,lty=1) ### linearInterpol.global matplot(t(imputation(mat1,"linearInterpol.global",NA,NA)),type="l", ylim=c(-5,10),lty=1,col=1,main="linearInterpol.global") matlines(t(mat1),type="o",col=2,lwd=3,pch=16,lty=1) ### linearInterpol.local matplot(t(imputation(mat1,"linearInterpol.local",NA,NA)),type="l", ylim=c(-5,10),lty=1,col=1,main="linearInterpol.local") matlines(t(mat1),type="o",col=2,lwd=3,pch=16,lty=1) ### linearInterpol.bisector matplot(t(imputation(mat1,"linearInterpol.bisector",NA,NA)),type="l", ylim=c(-5,10),lty=1,col=1,main="linearInterpol.bisector") matlines(t(mat1),type="o",col=2,lwd=3,pch=16,lty=1) ################## ### Copy mean mat3 <- matrix(c( NA, 9, 8, 8, 7, 6,NA, 7, 6,NA,NA,NA, 4,5, 3, 4, 3,NA,NA, 2,3, NA,NA, 1,NA,NA, 1,1),4,7,byrow=TRUE) par(mfrow=c(2,2)) ### copyMean.locf matplot(t(imputation(mat2,"copyMean.locf",NA,NA)),type="l", ylim=c(-5,10),lty=1,col=1,main="copyMean.locf") matlines(t(mat2),type="o",col=2,lwd=3,pch=16,lty=1) ### copyMean.global matplot(t(imputation(mat2,"copyMean.global",NA,NA)),type="l", ylim=c(-5,10),lty=1,col=1,main="copyMean.global") matlines(t(mat2),type="o",col=2,lwd=3,pch=16,lty=1) ### copyMean.local matplot(t(imputation(mat2,"copyMean.local",NA,NA)),type="l", ylim=c(-5,10),lty=1,col=1,main="copyMean.local") matlines(t(mat2),type="o",col=2,lwd=3,pch=16,lty=1) ### copyMean.bisector matplot(t(imputation(mat2,"copyMean.bisector",NA,NA)),type="l", ylim=c(-5,10),lty=1,col=1,main="copyMean.bisector") matlines(t(mat2),type="o",col=2,lwd=3,pch=16,lty=1) ### crossMean matImp <- imputation(matMissing,method="crossMean") matplot(t(matImp),col=c(2,1,1,1),lty=c(2,1,1,1),type="l",lwd=c(2,1,1,1),pch=16, xlab="Dotted red=imputed trajectory\nFull red=trajectory to impute", ylab="",main="Method 'crossMean'") lines(timeV,matMissing[1,],col=2,type="o",lwd=3) ### crossMedian matImp <- imputation(matMissing,method="crossMedian") matplot(t(matImp),col=c(2,1,1,1),lty=c(2,1,1,1),type="l",lwd=c(2,1,1,1),pch=16, xlab="Dotted red=imputed trajectory\nFull red=trajectory to impute",ylab="", main="Method 'crossMedian'") lines(timeV,matMissing[1,],col=2,type="o",lwd=3) ### crossHotDeck matImp <- imputation(matMissing,method="crossHotDeck") matplot(t(matImp),col=c(2,1,1,1),lty=c(2,1,1,1),type="l",lwd=c(2,1,1,1),pch=16, xlab="Dotted red=imputed trajectory\nFull red=trajectory to impute",ylab="", main="Method 'crossHotDeck'") lines(timeV,matMissing[1,],col=2,type="o",lwd=3) ################## ### Method using trajectory par(mfrow=c(2,3)) ### trajMean matImp <- imputation(matMissing,method="trajMean") plot(timeV,matImp[1,],type="l",lwd=2,ylim=c(10,30),ylab="",xlab="nocb") lines(timeV,matMissing[1,],col=2,type="o",lwd=3) ### trajMedian matImp <- imputation(matMissing,method="trajMedian") plot(timeV,matImp[1,],type="l",lwd=2,ylim=c(10,30),ylab="",xlab="nocb") lines(timeV,matMissing[1,],col=2,type="o",lwd=3) ### trajHotDeck matImp <- imputation(matMissing,method="trajHotDeck") plot(timeV,matImp[1,],type="l",lwd=2,ylim=c(10,30),ylab="",xlab="nocb") lines(timeV,matMissing[1,],col=2,type="o",lwd=3) ### locf matImp <- imputation(matMissing,method="locf") plot(timeV,matImp[1,],type="l",lwd=2,ylim=c(10,30),ylab="",xlab="locf") lines(timeV,matMissing[1,],col=2,type="o",lwd=3) ### nocb matImp <- imputation(matMissing,method="nocb") plot(timeV,matImp[1,],type="l",lwd=2,ylim=c(10,30),ylab="",xlab="nocb") lines(timeV,matMissing[1,],col=2,type="o",lwd=3) par(mfrow=c(2,2)) ### linearInterpol.locf matImp <- imputation(matMissing,method="linearInterpol.locf") plot(timeV,matImp[1,],type="o",ylim=c(0,30),ylab="",xlab="LI-Global") lines(timeV,matMissing[1,],col=2,type="o",lwd=3) ### linearInterpol.local matImp <- imputation(matMissing,method="linearInterpol.local") plot(timeV,matImp[1,],type="o",ylim=c(0,30),ylab="",xlab="LI-Global") lines(timeV,matMissing[1,],col=2,type="o",lwd=3) ### linearInterpol.global matImp <- imputation(matMissing,method="linearInterpol.global") plot(timeV,matImp[1,],type="o",ylim=c(0,30),ylab="",xlab="LI-Global") lines(timeV,matMissing[1,],col=2,type="o",lwd=3) ### linearInterpol.bisector matImp <- imputation(matMissing,method="linearInterpol.bisector") plot(timeV,matImp[1,],type="o",ylim=c(0,30),ylab="",xlab="LI-Global") lines(timeV,matMissing[1,],col=2,type="o",lwd=3) par(mfrow=c(2,2)) ### copyMean.locf matImp <- imputation(matMissing,method="copyMean.locf") plot(timeV,matImp[1,],type="o",ylim=c(0,30),ylab="",xlab="LI-Global") lines(timeV,matMissing[1,],col=2,type="o",lwd=3) lines(timeV,moy,col=3,type="o",lwd=3) ### copyMean.local matImp <- imputation(matMissing,method="copyMean.local") plot(timeV,matImp[1,],type="o",ylim=c(0,30),ylab="",xlab="LI-Global") lines(timeV,matMissing[1,],col=2,type="o",lwd=3) lines(timeV,moy,col=3,type="o",lwd=3) ### copyMean.global matImp <- imputation(matMissing,method="copyMean.global") plot(timeV,matImp[1,],type="o",ylim=c(0,30),ylab="",xlab="LI-Global") lines(timeV,matMissing[1,],col=2,type="o",lwd=3) lines(timeV,moy,col=3,type="o",lwd=3) ### copyMean.bisector matImp <- imputation(matMissing,method="copyMean.bisector") plot(timeV,matImp[1,],type="o",ylim=c(0,30),ylab="",xlab="LI-Global") lines(timeV,matMissing[1,],col=2,type="o",lwd=3) lines(timeV,moy,col=3,type="o",lwd=3) par(ask=FALSE)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.