Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

loo

Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian Models

Efficient approximate leave-one-out cross-validation (LOO) for Bayesian models fit using Markov chain Monte Carlo, as described in Vehtari, Gelman, and Gabry (2017) <doi:10.1007/s11222-016-9696-4>. The approximation uses Pareto smoothed importance sampling (PSIS), a new procedure for regularizing importance weights. As a byproduct of the calculations, we also obtain approximate standard errors for estimated predictive errors and for the comparison of predictive errors between models. The package also provides methods for using stacking and other model weighting techniques to average Bayesian predictive distributions.

Functions (44)

loo

Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian Models

v2.4.1
GPL (>= 3)
Authors
Aki Vehtari [aut], Jonah Gabry [cre, aut], Mans Magnusson [aut], Yuling Yao [aut], Paul-Christian Bürkner [aut], Topi Paananen [aut], Andrew Gelman [aut], Ben Goodrich [ctb], Juho Piironen [ctb], Bruno Nicenboim [ctb]
Initial release
2020-12-07

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.