Sparse antimagic squares
Produces an antimagic square of order m using Gray and MacDougall's method.
sam(m, u, A=NULL, B=A)
m |
Order of the magic square (not “ |
u |
See details section |
A,B |
Start latin squares, with default |
In Gray's terminology, sam(m,n)
produces a
SAM(2m,2u+1,0).
The method is not vectorized.
To test for these properties, use functions such as
is.antimagic()
, documented under is.magic.Rd
.
Robin K. S. Hankin
I. D. Gray and J. A. MacDougall 2006. “Sparse anti-magic squares and vertex-magic labelings of bipartite graphs”, Discrete Mathematics, volume 306, pp2878-2892
sam(6,2) jj <- matrix(c( 5, 2, 3, 4, 1, 3, 5, 4, 1, 2, 2, 3, 1, 5, 4, 4, 1, 2, 3, 5, 1, 4, 5, 2, 3),5,5) is.sam(sam(5,2,B=jj))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.