Perspective and heatmap/contour plots for models
Draw one or more perspectives plots reflecting predictions or marginal effects from a model, or the same using a flat heatmap or “filled contour” (image
) representation. Currently methods exist for “lm”, “glm”, and “loess” models.
## S3 method for class 'lm' image( x, xvar = attributes(terms(x))[["term.labels"]][1], yvar = attributes(terms(x))[["term.labels"]][2], dx = xvar, what = c("prediction", "effect"), type = c("response", "link"), vcov = stats::vcov(x), nx = 25L, ny = nx, nz = 20, xlab = xvar, ylab = yvar, xaxs = "i", yaxs = xaxs, bty = "o", col = gray(seq(0.05, 0.95, length.out = nz), alpha = 0.75), contour = TRUE, contour.labels = NULL, contour.drawlabels = TRUE, contour.cex = 0.6, contour.col = "black", contour.lty = 1, contour.lwd = 1, ... ) ## S3 method for class 'glm' image( x, xvar = attributes(terms(x))[["term.labels"]][1], yvar = attributes(terms(x))[["term.labels"]][2], dx = xvar, what = c("prediction", "effect"), type = c("response", "link"), vcov = stats::vcov(x), nx = 25L, ny = nx, nz = 20, xlab = xvar, ylab = yvar, xaxs = "i", yaxs = xaxs, bty = "o", col = gray(seq(0.05, 0.95, length.out = nz), alpha = 0.75), contour = TRUE, contour.labels = NULL, contour.drawlabels = TRUE, contour.cex = 0.6, contour.col = "black", contour.lty = 1, contour.lwd = 1, ... ) ## S3 method for class 'loess' image( x, xvar = attributes(terms(x))[["term.labels"]][1], yvar = attributes(terms(x))[["term.labels"]][2], dx = xvar, what = c("prediction", "effect"), type = c("response", "link"), vcov = stats::vcov(x), nx = 25L, ny = nx, nz = 20, xlab = xvar, ylab = yvar, xaxs = "i", yaxs = xaxs, bty = "o", col = gray(seq(0.05, 0.95, length.out = nz), alpha = 0.75), contour = TRUE, contour.labels = NULL, contour.drawlabels = TRUE, contour.cex = 0.6, contour.col = "black", contour.lty = 1, contour.lwd = 1, ... ) ## S3 method for class 'lm' persp( x, xvar = attributes(terms(x))[["term.labels"]][1], yvar = attributes(terms(x))[["term.labels"]][2], dx = xvar, what = c("prediction", "effect"), type = c("response", "link"), vcov = stats::vcov(x), nx = 25L, ny = nx, theta = 45, phi = 10, shade = 0.75, xlab = xvar, ylab = yvar, zlab = if (match.arg(what) == "prediction") "Predicted value" else paste0("Marginal effect of ", dx), ticktype = c("detailed", "simple"), ... ) ## S3 method for class 'glm' persp( x, xvar = attributes(terms(x))[["term.labels"]][1], yvar = attributes(terms(x))[["term.labels"]][2], dx = xvar, what = c("prediction", "effect"), type = c("response", "link"), vcov = stats::vcov(x), nx = 25L, ny = nx, theta = 45, phi = 10, shade = 0.75, xlab = xvar, ylab = yvar, zlab = if (match.arg(what) == "prediction") "Predicted value" else paste0("Marginal effect of ", dx), ticktype = c("detailed", "simple"), ... ) ## S3 method for class 'loess' persp( x, xvar = attributes(terms(x))[["term.labels"]][1], yvar = attributes(terms(x))[["term.labels"]][2], dx = xvar, what = c("prediction", "effect"), type = c("response", "link"), vcov = stats::vcov(x), nx = 25L, ny = nx, theta = 45, phi = 10, shade = 0.75, xlab = xvar, ylab = yvar, zlab = if (match.arg(what) == "prediction") "Predicted value" else paste0("Marginal effect of ", dx), ticktype = c("detailed", "simple"), ... )
x |
A model object. |
xvar |
A character string specifying the name of variable to use as the x dimension in the plot. See |
yvar |
A character string specifying the name of variable to use as the y dimension in the plot. See |
dx |
A character string specifying the name of the variable for which the conditional average marginal effect is desired when |
what |
A character string specifying whether to draw “prediction” (fitted values from the model, calculated using |
type |
A character string specifying whether to calculate predictions on the response scale (default) or link (only relevant for non-linear models). |
vcov |
A matrix containing the variance-covariance matrix for estimated model coefficients, or a function to perform the estimation with |
nx |
An integer specifying the number of points across |
ny |
An integer specifying the number of points across |
nz |
An integer specifying, for |
xlab |
A character string specifying the value of |
ylab |
A character string specifying the value of |
xaxs |
A character string specifying the x-axis type (see |
yaxs |
A character string specifying the y-axis type (see |
bty |
A character string specifying the box type (see |
col |
A character vector specifying colors to use when coloring the contour plot. |
contour |
For |
contour.labels |
For |
contour.drawlabels |
For |
contour.cex |
For |
contour.col |
For |
contour.lty |
For |
contour.lwd |
For |
... |
|
theta |
For |
phi |
For |
shade |
For |
zlab |
A character string specifying the value of |
ticktype |
A character string specifying one of: “detailed” (the default) or “simple”. See |
## Not run: require('datasets') # prediction from several angles m <- lm(mpg ~ wt*drat, data = mtcars) persp(m, theta = c(45, 135, 225, 315)) # flat/heatmap representation image(m) # marginal effect of 'drat' across drat and wt m <- lm(mpg ~ wt*drat*I(drat^2), data = mtcars) persp(m, xvar = "drat", yvar = "wt", what = "effect", nx = 10, ny = 10, ticktype = "detailed") # a non-linear model m <- glm(am ~ wt*drat, data = mtcars, family = binomial) persp(m, theta = c(30, 60)) # prediction # flat/heatmap representation image(m) # effects on linear predictor and outcome persp(m, xvar = "drat", yvar = "wt", what = "effect", type = "link") persp(m, xvar = "drat", yvar = "wt", what = "effect", type = "response") ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.