EM algorithm starting with E-step for a parameterized Gaussian mixture model
Implements the EM algorithm for a parameterized Gaussian mixture model, starting with the expectation step.
emE(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emV(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emX(data, prior = NULL, warn = NULL, ...) emEII(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emVII(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emEEI(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emVEI(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emEVI(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emVVI(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emEEE(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emVEE(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emEVE(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emVVE(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emEEV(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emVEV(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emEVV(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emVVV(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emXII(data, prior = NULL, warn = NULL, ...) emXXI(data, prior = NULL, warn = NULL, ...) emXXX(data, prior = NULL, warn = NULL, ...)
data |
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables. |
parameters |
The parameters of the model:
|
prior |
The default assumes no prior, but this argument allows specification of a
conjugate prior on the means and variances through the function
|
control |
A list of control parameters for EM. The defaults are set by the call
|
warn |
A logical value indicating whether or not a warning should be issued
whenever a singularity is encountered.
The default is given in |
... |
Catches unused arguments in indirect or list calls via |
A list including the following components:
modelName |
A character string identifying the model (same as the input argument). |
z |
A matrix whose |
parameters |
|
loglik |
The log likelihood for the data in the mixture model. |
Attributes: |
|
msEst <- mstepEEE(data = iris[,-5], z = unmap(iris[,5])) names(msEst) emEEE(data = iris[,-5], parameters = msEst$parameters)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.