Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

mclust-package

Gaussian Mixture Modelling for Model-Based Clustering, Classification, and Density Estimation


Description

Gaussian finite mixture models estimated via EM algorithm for model-based clustering, classification, and density estimation, including Bayesian regularization and dimension reduction.

Details

For a quick introduction to mclust see the vignette A quick tour of mclust.

See also:

Author(s)

Chris Fraley, Adrian Raftery and Luca Scrucca.

Maintainer: Luca Scrucca luca.scrucca@unipg.it

References

Scrucca L., Fop M., Murphy T. B. and Raftery A. E. (2016) mclust 5: clustering, classification and density estimation using Gaussian finite mixture models, The R Journal, 8/1, pp. 289-317.

Fraley C. and Raftery A. E. (2002) Model-based clustering, discriminant analysis and density estimation, Journal of the American Statistical Association, 97/458, pp. 611-631.

Fraley C., Raftery A. E., Murphy T. B. and Scrucca L. (2012) mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical Report No. 597, Department of Statistics, University of Washington.

Examples

# Clustering
mod1 <- Mclust(iris[,1:4])
summary(mod1)
plot(mod1,  what = c("BIC", "classification"))

# Classification
data(banknote)
mod2 <- MclustDA(banknote[,2:7], banknote$Status)
summary(mod2)
plot(mod2)

# Density estimation
mod3 <- densityMclust(faithful$waiting)
summary(mod3)

mclust

Gaussian Mixture Modelling for Model-Based Clustering, Classification, and Density Estimation

v5.4.10
GPL (>= 2)
Authors
Chris Fraley [aut], Adrian E. Raftery [aut] (<https://orcid.org/0000-0002-6589-301X>), Luca Scrucca [aut, cre] (<https://orcid.org/0000-0003-3826-0484>), Thomas Brendan Murphy [ctb] (<https://orcid.org/0000-0002-5668-7046>), Michael Fop [ctb] (<https://orcid.org/0000-0003-3936-2757>)
Initial release
2022-05-20

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.