EM algorithm starting with M-step for a parameterized Gaussian mixture model
Implements the EM algorithm for a parameterized Gaussian mixture model, starting with the maximization step.
meE(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...) meV(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...) meX(data, prior = NULL, warn = NULL, ...) meEII(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...) meVII(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...) meEEI(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...) meVEI(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...) meEVI(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...) meVVI(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...) meEEE(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...) meVEE(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...) meEVE(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...) meVVE(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...) meEEV(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...) meVEV(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...) meEVV(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...) meVVV(data, z, prior=NULL, control=emControl(), Vinv=NULL, warn=NULL, ...) meXII(data, prior = NULL, warn = NULL, ...) meXXI(data, prior = NULL, warn = NULL, ...) meXXX(data, prior = NULL, warn = NULL, ...)
data |
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables. |
z |
A matrix whose |
prior |
Specification of a conjugate prior on the means and variances. The default assumes no prior. |
control |
A list of control parameters for EM. The defaults are set by the call
|
Vinv |
An estimate of the reciprocal hypervolume of the data region, when the
model is to include a noise term. Set to a negative value or zero if
a noise term is desired, but an estimate is unavailable — in that
case function |
warn |
A logical value indicating whether or not certain warnings
(usually related to singularity) should be issued when the
estimation fails. The default is given by |
... |
Catches unused arguments in indirect or list calls via |
A list including the following components:
modelName |
A character string identifying the model (same as the input argument). |
z |
A matrix whose |
parameters |
|
loglik |
The log likelihood for the data in the mixture model. |
Attributes: |
|
em
,
me
,
estep
,
mclust.options
meVVV(data = iris[,-5], z = unmap(iris[,5]))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.