M-step for a parameterized Gaussian mixture model
Maximization step in the EM algorithm for a parameterized Gaussian mixture model.
mstepE( data, z, prior = NULL, warn = NULL, ...) mstepV( data, z, prior = NULL, warn = NULL, ...) mstepEII( data, z, prior = NULL, warn = NULL, ...) mstepVII( data, z, prior = NULL, warn = NULL, ...) mstepEEI( data, z, prior = NULL, warn = NULL, ...) mstepVEI( data, z, prior = NULL, warn = NULL, control = NULL, ...) mstepEVI( data, z, prior = NULL, warn = NULL, ...) mstepVVI( data, z, prior = NULL, warn = NULL, ...) mstepEEE( data, z, prior = NULL, warn = NULL, ...) mstepEEV( data, z, prior = NULL, warn = NULL, ...) mstepVEV( data, z, prior = NULL, warn = NULL, control = NULL,...) mstepVVV( data, z, prior = NULL, warn = NULL, ...) mstepEVE( data, z, prior = NULL, warn = NULL, control = NULL, ...) mstepEVV( data, z, prior = NULL, warn = NULL, ...) mstepVEE( data, z, prior = NULL, warn = NULL, control = NULL, ...) mstepVVE( data, z, prior = NULL, warn = NULL, control = NULL, ...)
data |
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables. |
z |
A matrix whose |
prior |
Specification of a conjugate prior on the means and variances. The default assumes no prior. |
warn |
A logical value indicating whether or not certain warnings
(usually related to singularity) should be issued when the
estimation fails. The default is given by |
control |
Values controlling termination for models |
... |
Catches unused arguments in indirect or list calls via |
A list including the following components:
modelName |
A character string identifying the model (same as the input argument). |
parameters |
|
Attributes: |
|
This function computes the M-step only for MVN mixtures, so in
analyses involving noise, the conditional probabilities input should
exclude those for the noise component.
In contrast to me
for the EM algorithm, computations in mstep
are carried out unless failure due to overflow would occur. To impose
stricter tolerances on a single mstep
, use me
with the
itmax component of the control
argument set to 1.
mstepVII(data = iris[,-5], z = unmap(iris[,5]))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.