Plotting method for MclustSSC semi-supervised classification
Plots for semi-supervised classification based on Gaussian finite mixture models.
## S3 method for class 'MclustSSC' plot(x, what = c("BIC", "classification", "uncertainty"), ...)
x |
An object of class |
what |
A string specifying the type of graph requested. Available choices are:
If not specified, in interactive sessions a menu of choices is proposed. |
... |
further arguments passed to or from other methods. See |
Luca Scrucca
X <- iris[,1:4] class <- iris$Species # randomly remove class labels set.seed(123) class[sample(1:length(class), size = 120)] <- NA table(class, useNA = "ifany") clPairs(X, ifelse(is.na(class), 0, class), symbols = c(0, 16, 17, 18), colors = c("grey", 4, 2, 3), main = "Partially classified data") # Fit semi-supervised classification model mod_SSC <- MclustSSC(X, class) summary(mod_SSC, parameters = TRUE) pred_SSC <- predict(mod_SSC) table(Predicted = pred_SSC$classification, Actual = class, useNA = "ifany") plot(mod_SSC, what = "BIC") plot(mod_SSC, what = "classification") plot(mod_SSC, what = "uncertainty")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.