Dendrograms for Model-based Agglomerative Hierarchical Clustering
Display two types for dendrograms for model-based hierarchical clustering objects.
## S3 method for class 'hc' plot(x, what=c("loglik","merge"), maxG=NULL, labels=FALSE, hang=0, ...)
x |
An object of class |
what |
A character string indicating the type of dendrogram to be displayed.
|
maxG |
The maximum number of clusters for the dendrogram.
For |
labels |
A logical variable indicating whether or not to display leaf (observation) labels for the dendrogram (row names of the data). These are likely to be useful only if the number of observations in fairly small, since otherwise the labels will be too crowded to read. The default is not to display the leaf labels. |
hang |
For |
... |
Additional plotting arguments. |
The plotting input does not share all of the properties of hclust
objects, hence not all plotting arguments associated with hclust
can be expected to work here.
A dendrogram is drawn, with distances based on either the classification likelihood or the merge level (number of clusters).
If modelName = "E"
(univariate with equal variances) or
modelName = "EII"
(multivariate with equal spherical
covariances), then the underlying model is the same as for
Ward's method for hierarchical clustering.
J. D. Banfield and A. E. Raftery (1993). Model-based Gaussian and non-Gaussian Clustering. Biometrics 49:803-821.
C. Fraley (1998). Algorithms for model-based Gaussian hierarchical clustering. SIAM Journal on Scientific Computing 20:270-281.
C. Fraley and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 97:611-631.
data(EuroUnemployment) hcTree <- hc(modelName = "VVV", data = EuroUnemployment) plot(hcTree, what = "loglik") plot(hcTree, what = "loglik", labels = TRUE) plot(hcTree, what = "loglik", maxG = 5, labels = TRUE) plot(hcTree, what = "merge") plot(hcTree, what = "merge", labels = TRUE) plot(hcTree, what = "merge", labels = TRUE, hang = 0.1) plot(hcTree, what = "merge", labels = TRUE, hang = -1) plot(hcTree, what = "merge", labels = TRUE, maxG = 5)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.