Classification of multivariate observations by semi-supervised Gaussian finite mixtures
Classify multivariate observations based on Gaussian finite mixture models estimated by MclustSSC
.
## S3 method for class 'MclustSSC' predict(object, newdata, ...)
Returns a list of with the following components:
classification |
a factor of predicted class labels for |
z |
a matrix whose [i,k]th entry is the probability that
observation i in |
Luca Scrucca
X <- iris[,1:4] class <- iris$Species # randomly remove class labels set.seed(123) class[sample(1:length(class), size = 120)] <- NA table(class, useNA = "ifany") clPairs(X, ifelse(is.na(class), 0, class), symbols = c(0, 16, 17, 18), colors = c("grey", 4, 2, 3), main = "Partially classified data") # Fit semi-supervised classification model mod_SSC <- MclustSSC(X, class) pred_SSC <- predict(mod_SSC) table(Predicted = pred_SSC$classification, Actual = class, useNA = "ifany") X_new = data.frame(Sepal.Length = c(5, 8), Sepal.Width = c(3.1, 4), Petal.Length = c(2, 5), Petal.Width = c(0.5, 2)) predict(mod_SSC, newdata = X_new)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.