Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

gen.ridge

Penalized Regression


Description

Perform a penalized regression, as used in penalized discriminant analysis.

Usage

gen.ridge(x, y, weights, lambda=1, omega, df, ...)

Arguments

x, y, weights

the x and y matrix and possibly a weight vector.

lambda

the shrinkage penalty coefficient.

omega

a penalty object; omega is the eigendecomposition of the penalty matrix, and need not have full rank. By default, standard ridge is used.

df

an alternative way to prescribe lambda, using the notion of equivalent degrees of freedom.

...

currently not used.

Value

A generalized ridge regression, where the coefficients are penalized according to omega. See the function definition for further details. No functions are provided for producing one dimensional penalty objects (omega). laplacian() creates a two-dimensional penalty object, suitable for (small) images.

See Also


mda

Mixture and Flexible Discriminant Analysis

v0.5-2
GPL-2
Authors
S original by Trevor Hastie & Robert Tibshirani. Original R port by Friedrich Leisch, Kurt Hornik and Brian D. Ripley. Balasubramanian Narasimhan has contributed to the upgrading of the code.
Initial release
2020-06-26

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.