Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

predict.mda

Classify by Mixture Discriminant Analysis


Description

Classify observations in conjunction with mda.

Usage

## S3 method for class 'mda'
predict(object, newdata, type, prior, dimension, g, ...)

Arguments

object

a fitted mda object.

newdata

new data at which to make predictions. If missing, the training data is used.

type

kind of predictions: type = "class" (default) produces a fitted factor, type = "variates" produces a matrix of discriminant variables (note that the maximal dimension is determined by the number of subclasses), type = "posterior" produces a matrix of posterior probabilities (based on a gaussian assumption), type = "hierarchical" produces the predicted class in sequence for models of dimensions specified by dimension argument.

prior

the prior probability vector for each class; the default is the training sample proportions.

dimension

the dimension of the space to be used, no larger than the dimension component of object, and in general less than the number of subclasses. dimension can be a vector for use with type = "hierarchical".

g

???

...

further arguments to be passed to or from methods.

Value

An appropriate object depending on type. object has a component fit which is regression fit produced by the method argument to mda. There should be a predict method for this object which is invoked. This method should itself take as input object and optionally newdata.

See Also

Examples

data(glass)
samp <- sample(1:nrow(glass), 100)
glass.train <- glass[samp,]
glass.test <- glass[-samp,]
glass.mda <- mda(Type ~ ., data = glass.train)
predict(glass.mda, glass.test, type = "post") # abbreviations are allowed
confusion(glass.mda, glass.test)

mda

Mixture and Flexible Discriminant Analysis

v0.5-2
GPL-2
Authors
S original by Trevor Hastie & Robert Tibshirani. Original R port by Friedrich Leisch, Kurt Hornik and Brian D. Ripley. Balasubramanian Narasimhan has contributed to the upgrading of the code.
Initial release
2020-06-26

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.