Comparative Table of Model Estimates
mtable
produces a table of estimates for several models.
mtable(...,coef.style=getOption("coef.style"), summary.stats=TRUE, signif.symbols=getOption("signif.symbols"), factor.style=getOption("factor.style"), show.baselevel=getOption("show.baselevel"), baselevel.sep=getOption("baselevel.sep"), getSummary=eval.parent(quote(getSummary)), float.style=getOption("float.style"), digits=min(3,getOption("digits")), sdigits=digits, show.eqnames=getOption("mtable.show.eqnames",NA), gs.options=NULL, controls=NULL, collapse.controls=FALSE, control.var.indicator=getOption("control.var.indicator",c("Yes","No")) ) ## S3 method for class 'memisc_mtable' relabel(x, ..., gsub = FALSE, fixed = !gsub, warn = FALSE) ## S3 method for class 'memisc_mtable' format(x,target=c("print","LaTeX","HTML","delim"), ... ) ## S3 method for class 'memisc_mtable' print(x, center.at=getOption("OutDec"), topsep="=",bottomsep="=",sectionsep="-",...) write.mtable(object,file="", format=c("delim","LaTeX","HTML"),...) ## S3 method for class 'memisc_mtable' toLatex(object,...)
... |
as argument to |
coef.style |
a character string which specifies the style of
coefficient values, whether standard errors, Wald/t-statistics,
or significance levels are reported, etc. See |
summary.stats |
if This argument may also contain a character vector with
the names of the summary statistics to report, or a list of
character vectors with names of summary statistics for each
object passed as argument in |
signif.symbols |
a named numeric vector to specify the "significance levels" and corresponding symbols. The numeric elements define the significance levels, the attached names define the associated symbols. |
factor.style |
a character string that specifies the style in
which factor contrasts are labled. See |
show.baselevel |
logical; determines whether base levels of factors are indicated for dummy coefficients |
baselevel.sep |
character that is used to separate the base level from the level that a dummy variable represents |
getSummary |
a function that computes model-related statistics that
appear in the table. See |
float.style |
default format for floating point numbers if
no format is specified by |
.
digits |
number of significant digits if not specified by
the template returned from |
sdigits |
integer; number of digits after decimal dot for summary statistics. |
show.eqnames |
logical; if |
gs.options |
an optional list of arguments passed on to
|
controls |
an optional formula or character vector that designates "control variables" for which no coefficients are reported, but only whether they are present in the model. |
collapse.controls |
a logical values; should the report about inclusion of control variables collapsed to a single value? If yes, models should either contain none or all of the control variables. |
control.var.indicator |
a character vector with to elements; the first element being used
to indicate the presence of a control variable or all
control variables (if |
x, object |
an object of class |
gsub, warn, fixed |
logical values, see |
target |
a character string which indicates the target format.
Currenlty the targets
"print" (see |
center.at |
a character string on which resulting values are centered.
Typically equal to ".". This is the default when |
topsep |
a character string that is recycled to a top rule. |
bottomsep |
a character string that is recycled to a bottom rule. |
sectionsep |
a character string that is recycled to seperate coefficients from summary statistics. |
file |
name of the file where to write to; defaults to console output. |
format |
character string that specifies the desired format. |
mtable
constructs a table of estimates for regression-type models.
format.memisc_mtable
formats suitable for use with output or conversion functions
such as print.memisc_mtable
, toLatex.memisc_mtable
, or
write.memisc_mtable
.
A call to mtable
results in an object of class "mtable"
with the following components:
coefficients |
a list that contains the model coefficients, |
summaries |
a matrix that contains the model summaries, |
calls |
a list of calls that created the model estimates being summarised. |
#### Basic workflow lm0 <- lm(sr ~ pop15 + pop75, data = LifeCycleSavings) lm1 <- lm(sr ~ dpi + ddpi, data = LifeCycleSavings) lm2 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings) options(summary.stats.lm=c("R-squared","N")) mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2) options(summary.stats.lm=c("sigma","R-squared","N")) mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2) options(summary.stats.lm=NULL) mtable123 <- mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2, summary.stats=c("sigma","R-squared","F","p","N")) (mtable123 <- relabel(mtable123, "(Intercept)" = "Constant", pop15 = "Percentage of population under 15", pop75 = "Percentage of population over 75", dpi = "Real per-capita disposable income", ddpi = "Growth rate of real per-capita disp. income" )) # This produces output in tab-delimited format: write.mtable(mtable123) ## Not run: # This produces output in tab-delimited format: file123 <- "mtable123.txt" write.mtable(mtable123,file=file123) file.show(file123) # The contents of this file can be pasted into Word # and converted into a Word table. ## End(Not run) ## Not run: texfile123 <- "mtable123.tex" write.mtable(mtable123,format="LaTeX",file=texfile123) file.show(texfile123) ## End(Not run) #### Examples with UC Berkeley data berkeley <- Aggregate(Table(Admit,Freq)~.,data=UCBAdmissions) berk0 <- glm(cbind(Admitted,Rejected)~1,data=berkeley,family="binomial") berk1 <- glm(cbind(Admitted,Rejected)~Gender,data=berkeley,family="binomial") berk2 <- glm(cbind(Admitted,Rejected)~Gender+Dept,data=berkeley,family="binomial") mtable(berk0,summary.stats=c("Deviance","N")) mtable(berk1,summary.stats=c("Deviance","N")) mtable(berk0,berk1,berk2,summary.stats=c("Deviance","N")) mtable(berk0,berk1,berk2, coef.style="horizontal", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="stat", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="ci", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="ci.se", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="ci.se.horizontal", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="ci.p.horizontal", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="ci.horizontal", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="all", summary.stats=c("Deviance","AIC","N")) mtable(berk0,berk1,berk2, coef.style="all.nostar", summary.stats=c("Deviance","AIC","N")) mtable(by(berkeley,berkeley$Dept, function(x)glm(cbind(Admitted,Rejected)~Gender, data=x,family="binomial")), summary.stats=c("Likelihood-ratio","N")) mtable(By(~Gender, glm(cbind(Admitted,Rejected)~Dept, family="binomial"), data=berkeley), summary.stats=c("Likelihood-ratio","N")) berkfull <- glm(cbind(Admitted,Rejected)~Dept/Gender - 1, data=berkeley,family="binomial") relabel(mtable(berkfull),Dept="Department",gsub=TRUE) #### Array-like semantics mtable123 <- mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2, summary.stats=c("sigma","R-squared","F","p","N")) dim(mtable123) dimnames(mtable123) mtable123[c("dpi","ddpi"), c("Model 2","Model 3")] #### Concatention mt01 <- mtable(lm0,lm1,summary.stats=c("R-squared","N")) mt12 <- mtable(lm1,lm2,summary.stats=c("R-squared","F","N")) c(mt01,mt12) # not that this makes sense, but ... c("Group 1"=mt01, "Group 2"=mt12)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.