Ten Studies of Correlation Matrices used by Becker (2009)
This dataset includes ten studies on the relationships between CSAI subscales and sports behavior. The original data were used in Craft et al. (2003), whereas a subset of them was illustrated in Becker (2009).
data("Becker09")
A list of data with the following structure:
A list of 4x4 correlation matrices. The variables are Performance, Cognitive, Somatic, and Self_confidence
A vector of sample sizes
Samples based on Individual or Team
Craft, L. L., Magyar, T. M., Becker, B. J., & Feltz, D. L. (2003). The relationship between the Competitive State Anxiety Inventory-2 and sport performance: a meta-analysis. Journal of Sport and Exercise Psychology, 25(1), 44-65.
Becker, B. J. (2009). Model-based meta-analysis. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 377-395). New York: Russell Sage Foundation.
## Not run: data(Becker09) #### Fixed-effects model ## First stage analysis fixed1 <- tssem1(Becker09$data, Becker09$n, method="FEM") summary(fixed1) ## Prepare a regression model using create.mxMatrix() A1 <- create.mxMatrix(c(0, "0.1*Cog2Per", "0.1*SO2Per", "0.1*SC2Per", 0, 0, 0, 0, 0, 0, 0, 0, 0, "0.1*Cog2SC", "0.1*SO2SC",0), type="Full", byrow=TRUE, ncol=4, nrow=4, as.mxMatrix=FALSE) ## This step is not necessary but it is useful for inspecting the model. dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- c("Performance", "Cognitive", "Somatic", "Self_confidence") ## Display A1 A1 S1 <- create.mxMatrix(c("0.1*var_Per", 0, 1, 0, "0.1*cor", 1, 0, 0, 0, "0.1*var_SC"), byrow=TRUE, type="Symm", as.mxMatrix=FALSE) ## This step is not necessary but it is useful for inspecting the model. dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- c("Performance", "Cognitive", "Somatic", "Self_confidence") ## Display S1 S1 ################################################################################ ## Alternative model specification in lavaan model syntax model <- "## Regression paths Performance ~ Cog2Per*Cognitive + SO2Per*Somatic + SC2Per*Self_confidence Self_confidence ~ Cog2SC*Cognitive + SO2SC*Somatic ## Fix the variances of Cog and SO at 1 Cognitive ~~ 1*Cognitive Somatic ~~ 1*Somatic ## Label the correlation between Cog and SO Cognitive ~~ cor*Somatic ## Label the error variances of Per and SC Performance ~~ var_Per*Performance Self_confidence ~~ var_SC*Self_confidence" ## Display the model plot(model, layout="spring") RAM <- lavaan2RAM(model, obs.variables=c("Performance", "Cognitive", "Somatic", "Self_confidence")) RAM A1 <- RAM$A S1 <- RAM$S ################################################################################ ## Second stage analysis fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, diag.constraints=TRUE, intervals.type="LB", model.name="TSSEM2 Becker09", mx.algebras=list( Cog=mxAlgebra(Cog2SC*SC2Per, name="Cog"), SO=mxAlgebra(SO2SC*SC2Per, name="SO"), Cog_SO=mxAlgebra(Cog2SC*SC2Per+SO2SC*SC2Per, name="Cog_SO")) ) summary(fixed2) ## Display the model with the parameter estimates plot(fixed2, layout="spring") #### Fixed-effects model: with type of sport as cluster ## First stage analysis cluster1 <- tssem1(Becker09$data, Becker09$n, method="FEM", cluster=Becker09$Type_of_sport) summary(cluster1) ## Second stage analysis cluster2 <- tssem2(cluster1, Amatrix=A1, Smatrix=S1, diag.constraints=TRUE, intervals.type="LB", model.name="TSSEM2 Becker09", mx.algebras=list( Cog=mxAlgebra(Cog2SC*SC2Per, name="Cog"), SO=mxAlgebra(SO2SC*SC2Per, name="SO"), Cog_SO=mxAlgebra(Cog2SC*SC2Per+SO2SC*SC2Per, name="Cog_SO")) ) summary(cluster2) ## Convert the model to semPlotModel object with 2 plots ## Use the short forms of the variable names my.plots <- lapply(X=cluster2, FUN=meta2semPlot, manNames=c("Per","Cog","SO","SC") ) ## Load the library library("semPlot") ## Setup two plots layout(t(1:2)) ## The labels are overlapped. We may modify it by using layout="spring" semPaths(my.plots[[1]], whatLabels="est", nCharNodes=10, color="orange", layout="spring", edge.label.cex=0.8) title("Individual sport") semPaths(my.plots[[2]], whatLabels="est", nCharNodes=10, color="skyblue", layout="spring", edge.label.cex=0.8) title("Team sport") #### Random-effects model ## First stage analysis random1 <- tssem1(Becker09$data, Becker09$n, method="REM", RE.type="Diag") summary(random1) ## Second stage analysis random2 <- tssem2(random1, Amatrix=A1, Smatrix=S1, diag.constraints=TRUE, intervals.type="LB", model.name="TSSEM2 Becker09", mx.algebras=list( Cog=mxAlgebra(Cog2SC*SC2Per, name="Cog"), SO=mxAlgebra(SO2SC*SC2Per, name="SO"), Cog_SO=mxAlgebra(Cog2SC*SC2Per+SO2SC*SC2Per, name="Cog_SO")) ) summary(random2) ## Display the model plot(random2, what="path", layout="spring") ## Display the model with the parameter estimates plot(random2, layout="spring", color="yellow") #### Univariate r approach #### First stage of the analysis uni1 <- uniR1(Becker09$data, Becker09$n) uni1 #### Second stage of analysis using OpenMx model2 <- "## Regression paths Performance ~ Cog2Per*Cognitive + SO2Per*Somatic + SC2Per*Self_confidence Self_confidence ~ Cog2SC*Cognitive + SO2SC*Somatic ## Provide starting values for Cog and SO Cognitive ~~ start(1)*Cognitive Somatic ~~ start(1)*Somatic ## Label the correlation between Cog and SO Cognitive ~~ cor*Somatic ## Label the error variances of Per and SC Performance ~~ var_Per*Performance Self_confidence ~~ var_SC*Self_confidence" RAM2 <- lavaan2RAM(model2, obs.variables=c("Performance", "Cognitive", "Somatic", "Self_confidence")) RAM2 uni2mx <- uniR2mx(uni1, RAM=RAM2) summary(uni2mx) #### Second stage of analysis Using lavaan model3 <- "## Regression paths Performance ~ Cognitive + Somatic + Self_confidence Self_confidence ~ Cognitive + Somatic" uni2lavaan <- uniR2lavaan(uni1, model3) lavaan::summary(uni2lavaan) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.