Six Studies of Correlation Matrices reported by Becker (1992; 1995)
This data set includes six studies of correlation matrices reported by Becker (1992; 1995).
data(Becker92)
A list of data with the following structure:
A list of 6 studies of correlation matrices. The variables are Math (math aptitude), Spatial (spatial ability), and Verbal (verbal ability)
A vector of sample sizes
Becker, B. J. (1992). Using results from replicated studies to estimate linear models. Journal of Educational Statistics, 17(4), 341-362. doi:10.3102/10769986017004341
Becker, B. J. (1995). Corrections to "Using Results from Replicated Studies to Estimate Linear Models." Journal of Educational and Behavioral Statistics, 20(1), 100-102. doi:10.2307/1165390
## Not run: data(Becker92) #### Fixed-effects model ## First stage analysis ## Replicate Becker's (1992) analysis using 4 studies only fixed1 <- tssem1(Becker92$data[1:4], Becker92$n[1:4], method="FEM") summary(fixed1) ## ## Prepare a regression model using create.mxMatrix() ## A1 <- create.mxMatrix(c(0,0,0,"0.2*Spatial2Math", ## 0,0,"0.2*Verbal2Math",0,0), type="Full", ## ncol=3, nrow=3, as.mxMatrix=FALSE) ## var.names <- c("Math_aptitude","Spatial","Verbal") ## ## This step is not necessary but it is useful for inspecting the model. ## dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- var.names ## ## Display A1 ## A1 ## S1 <- create.mxMatrix(c("0.2*ErrorVarMath",0,0,1,"0.2*CorSpatialVerbal",1), ## type="Symm", as.mxMatrix=FALSE) ## ## This step is not necessary but it is useful for inspecting the model. ## dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- var.names ## ## Display S1 ## S1 ################################################################################ ## Alternative model specification in lavaan model syntax model <- "## Regression paths Math ~ Spatial2Math*Spatial + Verbal2Math*Verbal Spatial ~~ CorSpatialVerbal*Verbal ## Fix the variances of Spatial and Verbal at 1 Spatial ~~ 1*Spatial Verbal ~~ 1*Verbal ## Label the error variance of Math Math ~~ ErrorVarMath*Math + start(0.2)*Math" ## Display the model plot(model) RAM <- lavaan2RAM(model, obs.variables=c("Math", "Spatial", "Verbal")) RAM ################################################################################ ## Fixed-effects model: Second stage analysis ## Two equivalent versions to calculate the R2 and its 95% LBCI fixed2 <- tssem2(fixed1, RAM=RAM, intervals.type="LB", mx.algebras=list(R1=mxAlgebra(Spatial2Math^2+Verbal2Math^2 +2*CorSpatialVerbal*Spatial2Math*Verbal2Math, name="R1"), R2=mxAlgebra(One-Smatrix[1,1], name="R2"), One=mxMatrix("Iden", ncol=1, nrow=1, name="One"))) summary(fixed2) ## Display the model with the parameter estimates plot(fixed2) #### Random-effects model ## First stage analysis ## No random effects for off-diagonal elements random1 <- tssem1(Becker92$data, Becker92$n, method="REM", RE.type="Diag") summary(random1) ## Random-effects model: Second stage analysis random2 <- tssem2(random1, RAM=RAM) summary(random2) ## Display the model with the parameter estimates plot(random2, color="yellow") #### Similar to conventional fixed-effects GLS approach ## First stage analysis ## No random effects ## Replicate Becker's (1992) analysis using 4 studies only gls1 <- tssem1(Becker92$data[1:4], Becker92$n[1:4], method="REM", RE.type="Zero", model.name="Fixed effects GLS Stage 1") summary(gls1) ## Fixed-effects GLS model: Second stage analysis gls2 <- tssem2(gls1, RAM=RAM, model.name="Fixed effects GLS Stage 2") summary(gls2) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.