Five Studies of Ten Correlation Matrices reported by Becker and Schram (1994)
This data set includes five studies of ten correlation matrices reported by Becker and Schram (1994).
data(Becker94)
A list of data with the following structure:
A list of 10 correlation matrices. The variables are Math (math aptitude), Spatial (spatial ability), and Verbal (verbal ability)
A vector of sample sizes
Females or Males samples
Becker, B. J., & Schram, C. M. (1994). Examining explanatory models through research synthesis. In H. Cooper & L. V. Hedges (Eds.), The handbook of research synthesis (pp. 357-381). New York: Russell Sage Foundation.
## Not run: data(Becker94) #### Fixed-effects model ## First stage analysis fixed1 <- tssem1(Becker94$data, Becker94$n, method="FEM") summary(fixed1) ## Prepare a regression model using create.mxMatrix() ## A1 <- create.mxMatrix(c(0,0,0,"0.2*Spatial2Math", ## 0,0,"0.2*Verbal2Math",0,0), type="Full", ## ncol=3, nrow=3, name="A1") ## S1 <- create.mxMatrix(c("0.2*ErrorVarMath",0,0,1, ## "0.2*CorBetweenSpatialVerbal",1), ## type="Symm", name="S1") ## An alternative method to create a regression model with the lavaan syntax model <- "## Regression model Math ~ Spatial2Math*Spatial + Verbal2Math*Verbal ## Error variance of Math Math ~~ ErrorVarMath*Math ## Variances of Spatial and Verbal fixed at 1.0 Spatial ~~ 1*Spatial Verbal ~~ 1*Verbal ## Correlation between Spatial and Verbal Spatial ~~ CorBetweenSpatialVerbal*Verbal" ## Display the model plot(model) RAM <- lavaan2RAM(model, obs.variables=c("Math", "Spatial", "Verbal")) RAM ## Second stage analysis ## A1 <- RAM$A ## S1 <- RAM$S ## fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, intervals.type="LB") fixed2 <- tssem2(fixed1, RAM=RAM, intervals.type="LB") summary(fixed2) ## Display the model with the parameter estimates plot(fixed2) #### Fixed-effects model: with gender as cluster ## First stage analysis cluster1 <- tssem1(Becker94$data, Becker94$n, method="FEM", cluster=Becker94$gender) summary(cluster1) ## Second stage analysis cluster2 <- tssem2(cluster1, RAM=RAM, intervals.type="LB") summary(cluster2) #### Conventional fixed-effects GLS approach ## First stage analysis ## No random effects ## Replicate Becker's (1992) analysis using 4 studies only gls1 <- tssem1(Becker92$data[1:4], Becker92$n[1:4], method="REM", RE.type="Zero", model.name="Fixed effects GLS Stage 1") summary(gls1) ## Fixed-effects GLS model: Second stage analysis gls2 <- tssem2(gls1, RAM=RAM, intervals.type="LB", model.name="Fixed effects GLS Stage 2") summary(gls2) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.