A Dataset from Bornmann et al. (2007)
A dataset from Bornmann et al. (2007) for three-level meta-analysis.
data(Bornmann07)
The variables are:
ID of the study
Study name
Cluster for effect sizes
Effect size: log odds ratio
Sampling variance of logOR
Year of publication
Type of proposal: either Grant or Fellowship
Discipline of the proposal: either Physical sciences, Life sciences/biology, Social sciences/humanities or Multidisciplinary)
Country of the proposal: either the United States, Canada, Australia, United Kingdom or Europe
Bornmann, L., Mutz, R., & Daniel, H.-D. (2007). Gender differences in grant peer review: A meta-analysis. Journal of Informetrics, 1(3), 226-238. doi:10.1016/j.joi.2007.03.001
Cheung, M. W.-L. (2014). Modeling dependent effect sizes with three-level meta-analyses: A structural equation modeling approach. Psychological Methods, 19, 211-229.
Marsh, H. W., Bornmann, L., Mutz, R., Daniel, H.-D., & O'Mara, A. (2009). Gender Effects in the Peer Reviews of Grant Proposals: A Comprehensive Meta-Analysis Comparing Traditional and Multilevel Approaches. Review of Educational Research, 79(3), 1290-1326. doi:10.3102/0034654309334143
## Not run: data(Bornmann07) #### ML estimation method ## No predictor summary( meta3(y=logOR, v=v, cluster=Cluster, data=Bornmann07) ) ## Type as a predictor ## Grant: 0 ## Fellowship: 1 summary( meta3(y=logOR, v=v, x=(as.numeric(Type)-1), cluster=Cluster, data=Bornmann07) ) ## Centered Year as a predictor summary( meta3(y=logOR, v=v, x=scale(Year, scale=FALSE), cluster=Cluster, data=Bornmann07) ) #### REML estimation method ## No predictor summary( reml3(y=logOR, v=v, cluster=Cluster, data=Bornmann07) ) ## Type as a predictor ## Grants: 0 ## Fellowship: 1 summary( reml3(y=logOR, v=v, x=(as.numeric(Type)-1), cluster=Cluster, data=Bornmann07) ) ## Centered Year as a predictor summary( reml3(y=logOR, v=v, x=scale(Year, scale=FALSE), cluster=Cluster, data=Bornmann07) ) ## Handling missing covariates with FIML ## MCAR ## Set seed for replication set.seed(1000000) ## Copy Bornmann07 to my.df my.df <- Bornmann07 ## "Fellowship": 1; "Grant": 0 my.df$Type_MCAR <- ifelse(Bornmann07$Type=="Fellowship", yes=1, no=0) ## Create 17 out of 66 missingness with MCAR my.df$Type_MCAR[sample(1:66, 17)] <- NA summary(meta3X(y=logOR, v=v, cluster=Cluster, x2=Type_MCAR, data=my.df)) ## MAR Type_MAR <- ifelse(Bornmann07$Type=="Fellowship", yes=1, no=0) ## Create 27 out of 66 missingness with MAR for cases Year<1996 index_MAR <- ifelse(Bornmann07$Year<1996, yes=TRUE, no=FALSE) Type_MAR[index_MAR] <- NA ## Include auxiliary variable summary(meta3X(y=logOR, v=v, cluster=Cluster, x2=Type_MAR, av2=Year, data=my.df)) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.