Two Datasets from Gleser and Olkin (1994)
It includes two datasets in multiple-treatment studies and multiple-endpoint studies reported by Gleser and Olkin (1994).
data("Gleser94")
A list of two data frames.
MTS
A data frame of multiple-treatment studies.
MES
A data frame of multiple-endpoint studies.
Gleser, L. J., & Olkin, I. (1994). Stochastically dependent effect sizes. In H. Cooper & L. V. Hedges (Eds.), The handbook of research synthesis. (pp. 339-355). New York: Russell Sage Foundation.
## Not run: data(Gleser94) #### Multiple-treatment studies Gleser94$MTS ## Assuming homogeneity of variances my.MTS <- t(apply(Gleser94$MTS, MARGIN=1, function(x) smdMTS(m=x[c("Mean.C", "Mean.E1", "Mean.E2", "Mean.E3", "Mean.E4", "Mean.E5")], v=x[c("SD.C", "SD.E1", "SD.E2", "SD.E3", "SD.E4", "SD.E5")]^2, n=x[c("N.C", "N.E1", "N.E2", "N.E3", "N.E4", "N.E5")], homogeneity="variance", list.output=FALSE))) ## Fixed-effects multivariate meta-analysis fit.MTS <- meta(y=my.MTS[, 1:5], v=my.MTS[, 6:20], RE.constraints = diag(0, ncol=5, nrow=5), model.name="MTS") summary(fit.MTS) #### Multiple-endpoint studies Gleser94$MES ## Calculate the sampling variances and covariance and amend into the data set Gleser94$MES$Uncoached.V11 <- with(Gleser94$MES, SD.Uncoached.Math^2) Gleser94$MES$Uncoached.V21 <- with(Gleser94$MES, SD.Uncoached.Math*Cor.Math.Verbal*SD.Uncoached.Verbal) Gleser94$MES$Uncoached.V22 <- with(Gleser94$MES, SD.Uncoached.Verbal^2) Gleser94$MES$Coached.V11 <- with(Gleser94$MES, SD.Coached.Math^2) Gleser94$MES$Coached.V21 <- with(Gleser94$MES, SD.Coached.Math*Cor.Math.Verbal*SD.Coached.Verbal) Gleser94$MES$Coached.V22 <- with(Gleser94$MES, SD.Coached.Verbal^2) ## Assuming homogeneity of covariance matrices my.MES <- t(apply(Gleser94$MES, MARGIN=1, function(x) smdMES(m1=x[c("Mean.Uncoached.Math", "Mean.Uncoached.Verbal")], m2=x[c("Mean.Coached.Math", "Mean.Coached.Verbal")], V1=vec2symMat(x[c("Uncoached.V11", "Uncoached.V21", "Uncoached.V22")]), V2=vec2symMat(x[c("Coached.V11", "Coached.V21", "Coached.V22")]), n1=x["N.Uncoached"], n2=x["N.Coached"], homogeneity="covariance", list.output=FALSE))) ## Fixed-effects multivariate meta-analysis fit.MES <- meta(y=my.MES[, 1:2], v=my.MES[, 3:5], RE.constraints = diag(0, ncol=2, nrow=2), model.name="MES") summary(fit.MES) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.