Simulated Effect Sizes Reported by Hox (2002)
Twenty stimulated studies on standardized mean difference and one continuous study characteristic reported by Hox (2002).
data(Hox02)
The variables are:
Study number
Effect size (standardized mean difference)
Sampling variance of the effect size
Duration of the experimental intervention in terms of weeks
Hox, J. J. (2002). Multilevel analysis: Techniques and applications. Mahwah, N.J.: Lawrence Erlbaum Associates.
Cheung, M. W.-L. (2008). A model for integrating fixed-, random-, and mixed-effects meta-analyses into structural equation modeling. Psychological Methods, 13, 182-202.
## Not run: data(Hox02) #### ML estimation method ## Random-effects meta-analysis summary( meta(y=yi, v=vi, data=Hox02, I2=c("I2q", "I2hm"), intervals.type="LB") ) ## Fixed-effects meta-analysis summary( meta(y=yi, v=vi, data=Hox02, RE.constraints=0, model.name="Fixed effects model") ) ## Mixed-effects meta-analysis with "weeks" as a predictor ## Request likelihood-based CI summary( meta(y=yi, v=vi, x=weeks, data=Hox02, intervals.type="LB", model.name="Mixed effects meta analysis with LB CI") ) #### REML estimation method ## Random-effects meta-analysis with REML summary( VarComp <- reml(y=yi, v=vi, data=Hox02) ) ## Extract the variance component VarComp_REML <- matrix( coef(VarComp), ncol=1, nrow=1 ) ## Meta-analysis by treating the variance component as fixed summary( meta(y=yi, v=vi, data=Hox02, RE.constraints=VarComp_REML) ) ## Mixed-effects meta-analysis with "weeks" as a predictor ## Request Wald CI summary( reml(y=yi, v=vi, x=weeks, intervals.type="z", data=Hox02, model.name="REML with LB CI") ) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.