Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

Hunter83

Fourteen Studies of Correlation Matrices reported by Hunter (1983)


Description

This dataset includes fourteen studies of Correlation Matrices reported by Hunter (1983)

Usage

data(Hunter83)

Details

A list of data with the following structure:

data

A list of 14 studies of correlation matrices. The variables are Ability, Job knowledge, Work sample and Supervisor rating

n

A vector of sample sizes

Source

Hunter, J. E. (1983). A causal analysis of cognitive ability, job knowledge, job performance, and supervisor ratings. In F. Landy, S. Zedeck, & J. Cleveland (Eds.), Performance Measurement and Theory (pp. 257-266). Hillsdale, NJ: Erlbaum.

Examples

## Not run: 
data(Hunter83)

#### Fixed-effects model
## First stage analysis
fixed1 <- tssem1(Hunter83$data, Hunter83$n, method="FEM",
                 model.name="TSSEM1 fixed effects model")
summary(fixed1)

#### Second stage analysis
## Model without direct effect from Ability to Supervisor
A1 <- create.mxMatrix(c(0,"0.1*A2J","0.1*A2W",0,0,0,"0.1*J2W","0.1*J2S",
                        0,0,0,"0.1*W2S",0,0,0,0),
                        type="Full", ncol=4, nrow=4, as.mxMatrix=FALSE)

## This step is not necessary but it is useful for inspecting the model.
dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- c("Ability","Job","Work","Supervisor") 
A1

S1 <- create.mxMatrix(c(1,"0.1*Var_e_J", "0.1*Var_e_W", "0.1*Var_e_S"),
                      type="Diag", as.mxMatrix=FALSE)
dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- c("Ability","Job","Work","Supervisor") 
S1

################################################################################
## Alternative model specification in lavaan model syntax
model <- "## Regression paths
          Job_knowledge ~ A2J*Ability
          Work_sample ~ A2W*Ability + J2W*Job_knowledge
          Supervisor ~ J2S*Job_knowledge + W2S*Work_sample

          ## Fix the variance of Ability at 1
          Ability ~~ 1*Ability

          ## Label the error variances of the dependent variables
          Job_knowledge ~~ VarE_J*Job_knowledge
          Work_sample ~~ VarE_W*Work_sample
          Supervisor ~~ VarE_S*Supervisor"

## Display the model
plot(model, layout="spring", sizeMan=10)

RAM <- lavaan2RAM(model, obs.variables=c("Ability","Job_knowledge",
                  "Work_sample","Supervisor"))
RAM

A1 <- RAM$A
S1 <- RAM$S

################################################################################
fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, intervals.type="LB",
                 diag.constraints=FALSE,
                 model.name="TSSEM2 fixed effects model")
summary(fixed2)

## Display the model with the parameter estimates
plot(fixed2, layout="spring")

## Coefficients
coef(fixed2)

## VCOV based on parametric bootstrap
vcov(fixed2)

#### Random-effects model with diagonal elements only
## First stage analysis
random1 <- tssem1(Hunter83$data, Hunter83$n, method="REM", RE.type="Diag", 
                  acov="individual", model.name="TSSEM1 random effects model")
summary(random1)

## Second stage analysis
## Model without direct effect from Ability to Supervisor

random2 <- tssem2(random1, Amatrix=A1, Smatrix=S1, intervals.type="LB",
                  diag.constraints=FALSE,
                  mx.algebras=
                  list( ind=mxAlgebra(A2J*J2S+A2J*J2W*W2S+A2W*W2S, name="ind") ),
                  model.name="TSSEM2 random effects model")
summary(random2)

## Display the model with the parameter estimates
plot(random2, layout="spring")

## Load the library
library("semPlot")

## End(Not run)

metaSEM

Meta-Analysis using Structural Equation Modeling

v1.2.5
GPL (>= 2)
Authors
Mike Cheung [aut, cre] (<https://orcid.org/0000-0003-0113-0758>)
Initial release
2020-11-29

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.