Fourteen Studies of Correlation Matrices reported by Hunter (1983)
This dataset includes fourteen studies of Correlation Matrices reported by Hunter (1983)
data(Hunter83)
A list of data with the following structure:
A list of 14 studies of correlation matrices. The variables are Ability, Job knowledge, Work sample and Supervisor rating
A vector of sample sizes
Hunter, J. E. (1983). A causal analysis of cognitive ability, job knowledge, job performance, and supervisor ratings. In F. Landy, S. Zedeck, & J. Cleveland (Eds.), Performance Measurement and Theory (pp. 257-266). Hillsdale, NJ: Erlbaum.
## Not run: data(Hunter83) #### Fixed-effects model ## First stage analysis fixed1 <- tssem1(Hunter83$data, Hunter83$n, method="FEM", model.name="TSSEM1 fixed effects model") summary(fixed1) #### Second stage analysis ## Model without direct effect from Ability to Supervisor A1 <- create.mxMatrix(c(0,"0.1*A2J","0.1*A2W",0,0,0,"0.1*J2W","0.1*J2S", 0,0,0,"0.1*W2S",0,0,0,0), type="Full", ncol=4, nrow=4, as.mxMatrix=FALSE) ## This step is not necessary but it is useful for inspecting the model. dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- c("Ability","Job","Work","Supervisor") A1 S1 <- create.mxMatrix(c(1,"0.1*Var_e_J", "0.1*Var_e_W", "0.1*Var_e_S"), type="Diag", as.mxMatrix=FALSE) dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- c("Ability","Job","Work","Supervisor") S1 ################################################################################ ## Alternative model specification in lavaan model syntax model <- "## Regression paths Job_knowledge ~ A2J*Ability Work_sample ~ A2W*Ability + J2W*Job_knowledge Supervisor ~ J2S*Job_knowledge + W2S*Work_sample ## Fix the variance of Ability at 1 Ability ~~ 1*Ability ## Label the error variances of the dependent variables Job_knowledge ~~ VarE_J*Job_knowledge Work_sample ~~ VarE_W*Work_sample Supervisor ~~ VarE_S*Supervisor" ## Display the model plot(model, layout="spring", sizeMan=10) RAM <- lavaan2RAM(model, obs.variables=c("Ability","Job_knowledge", "Work_sample","Supervisor")) RAM A1 <- RAM$A S1 <- RAM$S ################################################################################ fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, intervals.type="LB", diag.constraints=FALSE, model.name="TSSEM2 fixed effects model") summary(fixed2) ## Display the model with the parameter estimates plot(fixed2, layout="spring") ## Coefficients coef(fixed2) ## VCOV based on parametric bootstrap vcov(fixed2) #### Random-effects model with diagonal elements only ## First stage analysis random1 <- tssem1(Hunter83$data, Hunter83$n, method="REM", RE.type="Diag", acov="individual", model.name="TSSEM1 random effects model") summary(random1) ## Second stage analysis ## Model without direct effect from Ability to Supervisor random2 <- tssem2(random1, Amatrix=A1, Smatrix=S1, intervals.type="LB", diag.constraints=FALSE, mx.algebras= list( ind=mxAlgebra(A2J*J2S+A2J*J2W*W2S+A2W*W2S, name="ind") ), model.name="TSSEM2 random effects model") summary(random2) ## Display the model with the parameter estimates plot(random2, layout="spring") ## Load the library library("semPlot") ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.