Correlation Matrices from Mathieu et al. (2015)
The data set includes a list of correlation matrices of panel studies between cohesion (C) and performance (P) in Mathieu et al. (2015, Table 1).
data(Mathieu15)
A list of data with the following structure:
A list of studies of correlation matrices. The variables are C1, P1, C2, and P2.
A vector of sample sizes.
Year of publication.
Sample characteristics.
Whether the samples are student or non-student based on
Sample
.
Mathieu, J. E., Kukenberger, M. R., D'Innocenzo, L., & Reilly, G. (2015). Modeling reciprocal team cohesion-performance relationships, as impacted by shared leadership and members' competence. Journal of Applied Psychology, 100(3), 713-734. https://doi.org/10.1037/a0038898
## Not run: # TSSEM ## Model 1: no constraint ## Stage 1 analysis tssem1.fit <- tssem1(Mathieu15$data, Mathieu15$n) summary(tssem1.fit) ## Proposed model in lavaan syntax model1 <- 'C2 ~ c2c*C1 + p2c*P1 P2 ~ c2p*C1 + p2p*P1 C1 ~~ c1withp1*P1 C1 ~~ 1*C1 P1 ~~ 1*P1 C2 ~~ c2withp2*P2' ## Convert the lavaan model to RAM specification RAM1 <- lavaan2RAM(model1, obs.variables=c("C1", "P1", "C2", "P2")) RAM1 ## Stage 2 analysis tssem1b.fit <- tssem2(tssem1.fit, RAM=RAM1) summary(tssem1b.fit) plot(tssem1b.fit, col="yellow", edge.label.position=0.58) ## Model 2: Equality constraints on the path coefficient ## Proposed model with equal effects time 1 to time 2 model2 <- 'C2 ~ same*C1 + diff*P1 P2 ~ diff*C1 + same*P1 C1 ~~ c1withp1*P1 C1 ~~ 1*C1 P1 ~~ 1*P1 C2 ~~ c2withp2*P2' ## Convert the lavaan model to RAM specification RAM2 <- lavaan2RAM(model2, obs.variables=c("C1", "P1", "C2", "P2")) RAM2 ## Stage 2 analysis tssem2b.fit <- tssem2(tssem1.fit, RAM=RAM2) summary(tssem2b.fit) ## Compare the models with and without the constraints. anova(tssem1b.fit, tssem2b.fit) ## Plot the model plot(tssem2b.fit, col="yellow", edge.label.position=0.60) ## OSMASEM my.df <- Cor2DataFrame(Mathieu15) head(my.df$data) ## Model without any moderator osmasem.fit1 <- osmasem(model.name="No moderator", RAM=RAM1, data=my.df) summary(osmasem.fit1) ## Extract the heterogeneity variance-covariance matrix diag(VarCorr(osmasem.fit1)) plot(osmasem.fit1, col="yellow", edge.label.position=0.6) ## Model with student sample as a moderator on the regression coefficients A1 <- create.modMatrix(RAM1, output="A", "Student") A1 ## Model with a moderator osmasem.fit2 <- osmasem(model.name="Student sample as a moderator", RAM=RAM1, Ax=A1, data=my.df) summary(osmasem.fit2) ## Compare the models with and without the moderator anova(osmasem.fit2, osmasem.fit1) ## Get the R2 of the moderator osmasemR2(osmasem.fit2, osmasem.fit1) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.