A Dataset from Cheung and Chan (2005; 2009)
Eleven covariance matrices on work-related attitudes were extracted from the Inter-University Consortium for Political and Social Research (1989). Nine variables were selected by Cheung and Chan (2005; 2009) for demonstration purposes. They were grouped into three constructs: Job Prospects measured by job security (JP1), income (JP2), and advancement opportunity (JP3); Job Nature measured by interesting job (JN1), independent work (JN2), help other people (JN3), and useful to society (JN4); and Time Demand measured by flexible working hours (TD1) and lots of leisure time (TD2).
data(issp89)
A list of data with the following structure:
A list of 11 studies of covariance matrices
A vector of sample sizes
Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>
Inter-University Consortium for Political and Social Research. (1989). International Social Survey Program: Work orientation. Ann Arbor, MI: Author.
Cheung, M. W.-L., & Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10, 40-64.
Cheung, M. W.-L., & Chan, W. (2009). A two-stage approach to synthesizing covariance matrices in meta-analytic structural equation modeling. Structural Equation Modeling, 16, 28-53.
## Not run: data(issp89) #### Analysis of correlation structure in Cheung and Chan (2005) #### Fixed-effects model: Stage 1 analysis cor1 <- tssem1(issp89$data, issp89$n, method="FEM", cor.analysis=TRUE) summary(cor1) ## Prepare a model implied matrix ## Factor correlation matrix Phi <- create.mxMatrix( c("0.3*corf2f1","0.3*corf3f1","0.3*corf3f2"), type="Stand", as.mxMatrix=FALSE ) ## Error variances Psi <- create.mxMatrix( paste("0.2*e", 1:9, sep=""), type="Diag", as.mxMatrix=FALSE ) ## Create Smatrix S1 <- bdiagMat(list(Psi, Phi)) ## dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- c(paste("x",1:9,sep=""), ## paste("f",1:3,sep="")) ## S1 S1 <- as.mxMatrix(S1) ## Factor loadings Lambda <- create.mxMatrix( c(".3*f1x1",".3*f1x2",".3*f1x3",rep(0,9), ".3*f2x4",".3*f2x5",".3*f2x6",".3*f2x7", rep(0,9),".3*f3x8",".3*f3x9"), type="Full", ncol=3, nrow=9, as.mxMatrix=FALSE ) Zero1 <- matrix(0, nrow=9, ncol=9) Zero2 <- matrix(0, nrow=3, ncol=12) ## Create Amatrix A1 <- rbind( cbind(Zero1, Lambda), Zero2 ) ## dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- c(paste("x",1:9,sep=""), ## paste("f",1:3,sep="")) ## A1 A1 <- as.mxMatrix(A1) ## Create Fmatrix F1 <- create.Fmatrix(c(rep(1,9), rep(0,3))) #### Fixed-effects model: Stage 2 analysis cor2 <- tssem2(cor1, Amatrix=A1, Smatrix=S1, Fmatrix=F1, intervals.type="LB") summary(cor2) ## Display the model with the parameter estimates plot(cor2, nDigits=1) #### Analysis of covariance structure in Cheung and Chan (2009) #### Fixed-effects model: Stage 1 analysis cov1 <- tssem1(issp89$data, issp89$n, method="FEM", cor.analysis=FALSE) summary(cov1) #### Fixed-effects model: Stage 2 analysis cov2 <- tssem2(cov1, Amatrix=A1, Smatrix=S1, Fmatrix=F1) summary(cov2) ## Display the model with the parameter estimates plot(cov2, nDigits=1) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.