Summary Method for tssem1, wls, meta, and meta3X Objects
It summaries results for various class.
## S3 method for class 'tssem1FEM' summary(object, ...) ## S3 method for class 'tssem1FEM.cluster' summary(object, ...) ## S3 method for class 'tssem1REM' summary(object, robust=FALSE, ...) ## S3 method for class 'wls' summary(object, df.adjustment=0, ...) ## S3 method for class 'wls.cluster' summary(object, df.adjustment=0, ...) ## S3 method for class 'meta' summary(object, homoStat=TRUE, robust=FALSE, ...) ## S3 method for class 'meta3X' summary(object, allX=FALSE, robust=FALSE, ...) ## S3 method for class 'reml' summary(object, ...) ## S3 method for class 'CorPop' summary(object, ...) ## S3 method for class 'bootuniR2' summary(object, probs=c(0, 0.1, 0.5, 0.9, 1), cutoff.chisq.pvalue=0.05, cutoff.CFI=0.9, cutoff.SRMR=0.1, cutoff.RMSEA=0.05, ...) ## S3 method for class 'osmasem' summary(object, fitIndices=FALSE, numObs, robust=FALSE, ...) ## S3 method for class 'tssem1FEM' print.summary(x, ...) ## S3 method for class 'wls' print.summary(x, ...) ## S3 method for class 'meta' print.summary(x, ...) ## S3 method for class 'meta3X' print.summary(x, ...) ## S3 method for class 'reml' print.summary(x, ...) ## S3 method for class 'CorPop' print.summary(x, ...) ## S3 method for class 'bootuniR2' print.summary(x, ...)
object |
An object returned from either class
|
x |
An object returned from either class |
homoStat |
Logical. Whether to conduct a homogeneity test on the effect sizes. |
allX |
Logical. Whether to report the predictors and the auxiliary variables. |
robust |
Logicial. Whether to use robust standard error from |
df.adjustment |
Numeric. Adjust the degrees of freedom
manually. It may be necessary if the df calculated is incorrect when
|
probs |
Quantiles for the parameter estimates. |
cutoff.chisq.pvalue |
Cutoff of the p-value for the chi-square statistic. |
cutoff.CFI |
The cutoff of the CFI. |
cutoff.SRMR |
The cutoff of the SRMR. |
cutoff.RMSEA |
The cutoff of the RMSEA. |
fitIndices |
Whether to calculate the chi-square statistic and various goodness-of-fit indices in osmasem. Note. It may take a while since statistics of the saturated and independence models are required. |
numObs |
The number of observations in calculating the fit statistics in osmasem. If it is missing, the total number of observations is used. |
... |
Further arguments to be passed to |
If the OpenMx status1 is either 0 or 1, the estimation is considered fine. If the OpenMx status1 is other values, it indicates estimation problems. Users should refer to https://openmx.ssri.psu.edu//wiki/errors for more details.
Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.