Studies on Radiation Therapy with or without Adjuvant Chemotherapy in Patients with Malignant Gliomas
Results from 17 trials comparing post-operative radiation therapy with and without adjuvant chemotherapy in patients with malignant gliomas.
dat.fine1993
The data frame contains the following columns:
study | numeric |
study number |
nei | numeric |
sample size in the experimental group receiving radiotherapy plus adjuvant chemotherapy |
nci | numeric |
sample size in the control group receiving radiotherapy alone |
e1i | numeric |
number of survivors at 6 months in the experimental group |
c1i | numeric |
number of survivors at 6 months in the control group |
e2i | numeric |
number of survivors at 12 months in the experimental group |
c2i | numeric |
number of survivors at 12 months in the control group |
e3i | numeric |
number of survivors at 18 months in the experimental group |
c3i | numeric |
number of survivors at 18 months in the control group |
e4i | numeric |
number of survivors at 24 months in the experimental group |
c4i | numeric |
number of survivors at 24 months in the control group |
The 17 trials report the post-operative survival of patients with malignant gliomas receiving either radiation therapy with adjuvant chemotherapy or radiation therapy alone. Survival was assessed at 6, 12, 18, and 24 months in all but one study (which assessed survival only at 12 and at 24 months).
The data were reconstructed by Trikalinos and Olkin (2012) based on Table 2 in Fine et al. (1993) and Table 3 in Dear (1994). The data can be used to illustrate how a meta-analysis can be conducted of effect sizes reported at multiple time points using a multivariate model.
Dear, K. B. G. (1994). Iterative generalized least squares for meta-analysis of survival data at multiple times. Biometrics, 50, 989–1002.
Trikalinos, T. A., & Olkin, I. (2012). Meta-analysis of effect sizes reported at multiple time points: A multivariate approach. Clinical Trials, 9, 610–620.
Fine, H. A., Dear, K. B., Loeffler, J. S., Black, P. M., & Canellos, G. P. (1993). Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer, 71, 2585–2597.
### copy data into 'dat' and examine data dat <- dat.fine1993 dat ### calculate log(ORs) and sampling variances for each time point dat <- escalc(measure="OR", ai=e1i, n1i=nei, ci=c1i, n2i=nci, data=dat, var.names=c("y1i","v1i")) dat <- escalc(measure="OR", ai=e2i, n1i=nei, ci=c2i, n2i=nci, data=dat, var.names=c("y2i","v2i")) dat <- escalc(measure="OR", ai=e3i, n1i=nei, ci=c3i, n2i=nci, data=dat, var.names=c("y3i","v3i")) dat <- escalc(measure="OR", ai=e4i, n1i=nei, ci=c4i, n2i=nci, data=dat, var.names=c("y4i","v4i")) ### calculate the covariances (equations in Appendix of Trikalinos & Olkin, 2012) dat$v12i <- with(dat, nei / (e1i * (nei - e2i)) + nci / (c1i * (nci - c2i))) dat$v13i <- with(dat, nei / (e1i * (nei - e3i)) + nci / (c1i * (nci - c3i))) dat$v14i <- with(dat, nei / (e1i * (nei - e4i)) + nci / (c1i * (nci - c4i))) dat$v23i <- with(dat, nei / (e2i * (nei - e3i)) + nci / (c2i * (nci - c3i))) dat$v24i <- with(dat, nei / (e2i * (nei - e4i)) + nci / (c2i * (nci - c4i))) dat$v34i <- with(dat, nei / (e3i * (nei - e4i)) + nci / (c3i * (nci - c4i))) ### create dataset in long format dat.long <- data.frame(study=rep(1:nrow(dat), each=4), time=1:4, yi=c(t(dat[c("y1i","y2i","y3i","y4i")])), vi=c(t(dat[c("v1i","v2i","v3i","v4i")]))) ### var-cov matrices of the sudies V <- lapply(split(dat, dat$study), function(x) matrix(c( x$v1i, x$v12i, x$v13i, x$v14i, x$v12i, x$v2i, x$v23i, x$v24i, x$v13i, x$v23i, x$v3i, x$v34i, x$v14i, x$v24i, x$v34i, x$v4i), nrow=4, ncol=4, byrow=TRUE)) ### remove rows for the missing time points in study 17 dat.long <- na.omit(dat.long) ### remove corresponding rows/columns from var-cov matrix V[[17]] <- V[[17]][c(2,4),c(2,4)] ### make a copy of V Vc <- V ### replace any (near) singular var-cov matrices with ridge corrected versions repl.Vi <- function(Vi) { res <- eigen(Vi) if (any(res$values <= .08)) { round(res$vectors %*% diag(res$values + .08) %*% t(res$vectors), 12) } else { Vi } } Vc <- lapply(Vc, repl.Vi) ### do not correct var-cov matrix of study 17 Vc[[17]] <- V[[17]] ### construct block diagonal matrix Vc <- bldiag(Vc) ### multivariate fixed-effects model res <- rma.mv(yi, Vc, mods = ~ factor(time) - 1, method="FE", data=dat.long) print(res, digits=3) ### multivariate random-effects model with heteroscedastic AR(1) structure for the true effects res <- rma.mv(yi, Vc, mods = ~ factor(time) - 1, random = ~ time | study, struct="HAR", data=dat.long) print(res, digits=3) ## Not run: ### profile the variance components par(mfrow=c(2,2)) profile(res, tau2=1, xlim=c( 0,.2)) profile(res, tau2=2, xlim=c( 0,.2)) profile(res, tau2=3, xlim=c( 0,.2)) profile(res, tau2=4, xlim=c(.1,.3)) ## End(Not run) ## Not run: ### profile the autocorrelation coefficient par(mfrow=c(1,1)) profile(res, rho=1) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.