Convert Data from Vector to Table Format
The function converts summary data in vector format to the corresponding table format.
to.table(measure, ai, bi, ci, di, n1i, n2i, x1i, x2i, t1i, t2i, m1i, m2i, sd1i, sd2i, xi, mi, ri, ti, sdi, ni, data, slab, subset, add=1/2, to="none", drop00=FALSE, rows, cols)
measure |
a character string indicating the effect size or outcome measure corresponding to the summary data supplied. See below and the documentation of the |
ai |
vector to specify the 2x2 table frequencies (upper left cell). |
bi |
vector to specify the 2x2 table frequencies (upper right cell). |
ci |
vector to specify the 2x2 table frequencies (lower left cell). |
di |
vector to specify the 2x2 table frequencies (lower right cell). |
n1i |
vector to specify the group sizes or row totals (first group/row). |
n2i |
vector to specify the group sizes or row totals (second group/row). |
x1i |
vector to specify the number of events (first group). |
x2i |
vector to specify the number of events (second group). |
t1i |
vector to specify the total person-times (first group). |
t2i |
vector to specify the total person-times (second group). |
m1i |
vector to specify the means (first group or time point). |
m2i |
vector to specify the means (second group or time point). |
sd1i |
vector to specify the standard deviations (first group or time point). |
sd2i |
vector to specify the standard deviations (second group or time point). |
xi |
vector to specify the frequencies of the event of interest. |
mi |
vector to specify the frequencies of the complement of the event of interest or the group means. |
ri |
vector to specify the raw correlation coefficients. |
ti |
vector to specify the total person-times. |
sdi |
vector to specify the standard deviations. |
ni |
vector to specify the sample/group sizes. |
data |
optional data frame containing the variables given to the arguments above. |
slab |
optional vector with labels for the studies. |
subset |
optional (logical or numeric) vector indicating the subset of studies that should be included in the array returned by the function. |
add |
see the documentation of the |
to |
see the documentation of the |
drop00 |
see the documentation of the |
rows |
optional vector with row/group names. |
cols |
optional vector with column/outcome names. |
The escalc
function describes a wide variety of effect size and outcome measures that can be computed for a meta-analysis. The summary data used to compute those measures are typically contained in vectors, each element corresponding to a study. The to.table
function takes this information and constructs an array of k tables from these data.
For example, in various fields (such as the health and medical sciences), the response variable measured is often dichotomous (binary), so that the data from a study comparing two different groups can be expressed in terms of a 2x2 table, such as:
outcome 1 | outcome 2 | total | |
group 1 | ai |
bi |
n1i |
group 2 | ci |
di |
n2i
|
where ai
, bi
, ci
, and di
denote the cell frequencies (i.e., the number of people falling into a particular category) and n1i
and n2i
the row totals (i.e., the group sizes).
The cell frequencies in k such 2x2 tables can be specified via the ai
, bi
, ci
, and di
arguments (or alternatively, via the ai
, ci
, n1i
, and n2i
arguments). The function then creates the corresponding 2 \times 2 \times k array of tables. The measure
argument should then be set equal to one of the outcome measures that can be computed based on this type of data, such as "RR"
, "OR"
, "RD"
(it is not relevant which specific measure is chosen, as long as it corresponds to the specified summary data). See the documentation of the escalc
function for more details on the types of data formats available.
The examples below illustrate the use of this function.
An array with k elements each consisting of either 1 or 2 rows and an appropriate number of columns.
Wolfgang Viechtbauer wvb@metafor-project.org http://www.metafor-project.org/
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48. https://www.jstatsoft.org/v036/i03.
### create tables dat <- to.table(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste(author, year, sep=", "), rows=c("Vaccinated", "Not Vaccinated"), cols=c("TB+", "TB-")) dat ### create tables dat <- to.table(measure="IRR", x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, data=dat.hart1999, slab=paste(study, year, sep=", "), rows=c("Warfarin Group", "Placebo/Control Group")) dat ### create tables dat <- to.table(measure="MD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat.normand1999, slab=source, rows=c("Specialized Care", "Routine Care")) dat
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.