Incidence rate ratios for a negative binomial regression.
This function estimates a negative binomial regression model and calculates the corresponding incidence rate ratios.
negbinirr(formula, data, robust = FALSE, clustervar1 = NULL, clustervar2 = NULL, start = NULL, control = glm.control())
formula |
an object of class “formula” (or one that can be coerced to that class). |
data |
the data frame containing these data. This argument must be used. |
robust |
if |
clustervar1 |
a character value naming the first cluster on which to adjust the standard errors. |
clustervar2 |
a character value naming the second cluster on which to adjust the standard errors for two-way clustering. |
start |
starting values for the parameters in the |
control |
see |
If both robust=TRUE
and !is.null(clustervar1)
the function overrides the robust
command and computes clustered standard errors.
irr |
a coefficient matrix with columns containing the estimates, associated standard errors, test statistics and p-values. |
fit |
the fitted |
call |
the matched call. |
# simulate some data set.seed(12345) n = 1000 x = rnorm(n) y = rnegbin(n, mu = exp(1 + 0.5 * x), theta = 0.5) data = data.frame(y,x) negbinirr(formula=y~x,data=data)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.