Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

Predict.matrix.soap.film

Prediction matrix for soap film smooth


Description

Creates a prediction matrix for a soap film smooth object, mapping the coefficients of the smooth to the linear predictor component for the smooth. This is the Predict.matrix method function required by gam.

Usage

## S3 method for class 'soap.film'
Predict.matrix(object,data)
## S3 method for class 'sw'
Predict.matrix(object,data)
## S3 method for class 'sf'
Predict.matrix(object,data)

Arguments

object

A class "soap.film", "sf" or "sw" object.

data

A list list or data frame containing the arguments of the smooth at which predictions are required.

Details

The smooth object will be largely what is returned from smooth.construct.so.smooth.spec, although elements X and S are not needed, and need not be present, of course.

Value

A matrix. This may have an "offset" attribute corresponding to the contribution from any known boundary conditions on the smooth.

Author(s)

Simon N. Wood s.wood@bath.ac.uk

References

See Also

Examples

## This is a lower level example. The basis and 
## penalties are obtained explicitly 
## and `magic' is used as the fitting routine...

require(mgcv)
set.seed(66)

## create a boundary...
fsb <- list(fs.boundary())

## create some internal knots...
knots <- data.frame(x=rep(seq(-.5,3,by=.5),4),
                    y=rep(c(-.6,-.3,.3,.6),rep(8,4)))

## Simulate some fitting data, inside boundary...
n<-1000
x <- runif(n)*5-1;y<-runif(n)*2-1
z <- fs.test(x,y,b=1)
ind <- inSide(fsb,x,y) ## remove outsiders
z <- z[ind];x <- x[ind]; y <- y[ind] 
n <- length(z)
z <- z + rnorm(n)*.3 ## add noise

## plot boundary with knot and data locations
plot(fsb[[1]]$x,fsb[[1]]$y,type="l");points(knots$x,knots$y,pch=20,col=2)
points(x,y,pch=".",col=3);

## set up the basis and penalties...
sob <- smooth.construct2(s(x,y,bs="so",k=40,xt=list(bnd=fsb,nmax=100)),
              data=data.frame(x=x,y=y),knots=knots)
## ... model matrix is element `X' of sob, penalties matrices 
## are in list element `S'.

## fit using `magic'
um <- magic(z,sob$X,sp=c(-1,-1),sob$S,off=c(1,1))
beta <- um$b

## produce plots...
par(mfrow=c(2,2),mar=c(4,4,1,1))
m<-100;n<-50 
xm <- seq(-1,3.5,length=m);yn<-seq(-1,1,length=n)
xx <- rep(xm,n);yy<-rep(yn,rep(m,n))

## plot truth...
tru <- matrix(fs.test(xx,yy),m,n) ## truth
image(xm,yn,tru,col=heat.colors(100),xlab="x",ylab="y")
lines(fsb[[1]]$x,fsb[[1]]$y,lwd=3)
contour(xm,yn,tru,levels=seq(-5,5,by=.25),add=TRUE)

## Plot soap, by first predicting on a fine grid...

## First get prediction matrix...
X <- Predict.matrix2(sob,data=list(x=xx,y=yy))

## Now the predictions...
fv <- X%*%beta

## Plot the estimated function...
image(xm,yn,matrix(fv,m,n),col=heat.colors(100),xlab="x",ylab="y")
lines(fsb[[1]]$x,fsb[[1]]$y,lwd=3)
points(x,y,pch=".")
contour(xm,yn,matrix(fv,m,n),levels=seq(-5,5,by=.25),add=TRUE)

## Plot TPRS...
b <- gam(z~s(x,y,k=100))
fv.gam <- predict(b,newdata=data.frame(x=xx,y=yy))
names(sob$sd$bnd[[1]]) <- c("xx","yy","d")
ind <- inSide(sob$sd$bnd,xx,yy)
fv.gam[!ind]<-NA
image(xm,yn,matrix(fv.gam,m,n),col=heat.colors(100),xlab="x",ylab="y")
lines(fsb[[1]]$x,fsb[[1]]$y,lwd=3)
points(x,y,pch=".")
contour(xm,yn,matrix(fv.gam,m,n),levels=seq(-5,5,by=.25),add=TRUE)

mgcv

Mixed GAM Computation Vehicle with Automatic Smoothness Estimation

v1.8-35
GPL (>= 2)
Authors
Simon Wood <simon.wood@r-project.org>
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.