Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

trichol

Choleski decomposition of a tri-diagonal matrix


Description

Computes Choleski decomposition of a (symmetric positive definite) tri-diagonal matrix stored as a leading diagonal and sub/super diagonal.

Usage

trichol(ld,sd)

Arguments

ld

leading diagonal of matrix

sd

sub-super diagonal of matrix

Details

Calls dpttrf from LAPACK. The point of this is that it has O(n) computational cost, rather than the O(n^3) required by dense matrix methods.

Value

A list with elements ld and sd. ld is the leading diagonal and sd is the super diagonal of bidiagonal matrix B where B'B=T and T is the original tridiagonal matrix.

Author(s)

References

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A. and Sorensen, D., 1999. LAPACK Users' guide (Vol. 9). Siam.

See Also

Examples

require(mgcv)
## simulate some diagonals...
set.seed(19); k <- 7
ld <- runif(k)+1
sd <- runif(k-1) -.5

## get diagonals of chol factor...
trichol(ld,sd)

## compare to dense matrix result...
A <- diag(ld);for (i in 1:(k-1)) A[i,i+1] <- A[i+1,i] <- sd[i]
R <- chol(A)
diag(R);diag(R[,-1])

mgcv

Mixed GAM Computation Vehicle with Automatic Smoothness Estimation

v1.8-35
GPL (>= 2)
Authors
Simon Wood <simon.wood@r-project.org>
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.