Combine mids objects by columns
This function combines two mids
objects columnwise into a single
object of class mids
, or combines a single mids
object with
a vector
, matrix
, factor
or data.frame
columnwise into a mids
object.
cbind.mids(x, y = NULL, ...)
x |
A |
y |
A |
... |
Additional |
Pre-requisites: If y
is a mids
-object, the rows
of x$data
and y$data
should match, as well as the number
of imputations (m
). Other y
are transformed into a
data.frame
whose rows should match with x$data
.
The function renames any duplicated variable or block names by
appending ".1"
, ".2"
to duplicated names.
An S3 object of class mids
The function constructs the elements of the new mids
object as follows:
data |
Columnwise combination of the data in x and y
|
imp |
Combines the imputed values from x and y
|
m |
Taken from x$m
|
where |
Columnwise combination of x$where and y$where
|
blocks |
Combines x$blocks and y$blocks
|
call |
Vector, call[1] creates x , call[2]
is call to cbind.mids
|
nmis |
Equals c(x$nmis, y$nmis)
|
method |
Combines x$method and y$method
|
predictorMatrix |
Combination with zeroes on the off-diagonal blocks |
visitSequence |
Combined as c(x$visitSequence, y$visitSequence)
|
formulas |
Combined as c(x$formulas, y$formulas)
|
post |
Combined as c(x$post, y$post)
|
blots |
Combined as c(x$blots, y$blots)
|
ignore |
Taken from x$ignore
|
seed |
Taken from x$seed
|
iteration |
Taken from x$iteration
|
lastSeedValue |
Taken from x$lastSeedValue
|
chainMean |
Combined from x$chainMean and y$chainMean
|
chainVar |
Combined from x$chainVar and y$chainVar
|
loggedEvents |
Taken from x$loggedEvents
|
version |
Current package version |
date |
Current date |
Karin Groothuis-Oudshoorn, Stef van Buuren
cbind
, rbind.mids
, ibind
,
mids
# impute four variables at once (default) imp <- mice(nhanes, m = 1, maxit = 1, print = FALSE) imp$predictorMatrix # impute two by two data1 <- nhanes[, c("age", "bmi")] data2 <- nhanes[, c("hyp", "chl")] imp1 <- mice(data1, m = 2, maxit = 1, print = FALSE) imp2 <- mice(data2, m = 2, maxit = 1, print = FALSE) # Append two solutions imp12 <- cbind(imp1, imp2) # This is a different imputation model imp12$predictorMatrix # Append the other way around imp21 <- cbind(imp2, imp1) imp21$predictorMatrix # Append 'forgotten' variable chl data3 <- nhanes[, 1:3] imp3 <- mice(data3, maxit = 1, m = 2, print = FALSE) imp4 <- cbind(imp3, chl = nhanes$chl) # Of course, chl was not imputed head(complete(imp4)) # Combine mids object with data frame imp5 <- cbind(imp3, nhanes2) head(complete(imp5))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.