Imputation at level 2 by predictive mean matching
Imputes univariate missing data at level 2 using predictive mean matching.
Variables are level 1 are aggregated at level 2. The group identifier at
level 2 must be indicated by type = -2
in the predictorMatrix
.
mice.impute.2lonly.pmm(y, ry, x, type, wy = NULL, ...)
y |
Vector to be imputed |
ry |
Logical vector of length |
x |
Numeric design matrix with |
type |
Group identifier must be specified by '-2'. Predictors must be specified by '1'. |
wy |
Logical vector of length |
... |
Other named arguments. |
This function allows in combination with mice.impute.2l.pan
switching regression imputation between level 1 and level 2 as described in
Yucel (2008) or Gelman and Hill (2007, p. 541).
The function checks for partial missing level-2 data. Level-2 data
are assumed to be constant within the same cluster. If one or more
entries are missing, then the procedure aborts with an error
message that identifies the cluster with incomplete level-2 data.
In such cases, one may first fill in the cluster mean (or mode) by
the 2lonly.mean
method to remove inconsistencies.
A vector of length nmis
with imputations.
The extension to categorical variables transforms
a dependent factor variable by means of the as.integer()
function. This may make sense for categories that are
approximately ordered, but less so for pure nominal measures.
For a more general approach, see
miceadds::mice.impute.2lonly.function()
.
Alexander Robitzsch (IPN - Leibniz Institute for Science and Mathematics Education, Kiel, Germany), robitzsch@ipn.uni-kiel.de
Gelman, A. and Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge, Cambridge University Press.
Yucel, RM (2008). Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response. Philosophical Transactions of the Royal Society A, 366, 2389-2404.
Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman & Hall/CRC. Boca Raton, FL.
Other univariate-2lonly:
mice.impute.2lonly.mean()
,
mice.impute.2lonly.norm()
# simulate some data # x,y ... level 1 variables # v,w ... level 2 variables G <- 250 # number of groups n <- 20 # number of persons beta <- .3 # regression coefficient rho <- .30 # residual intraclass correlation rho.miss <- .10 # correlation with missing response missrate <- .50 # missing proportion y1 <- rep(rnorm(G, sd = sqrt(rho)), each = n) + rnorm(G * n, sd = sqrt(1 - rho)) w <- rep(round(rnorm(G), 2), each = n) v <- rep(round(runif(G, 0, 3)), each = n) x <- rnorm(G * n) y <- y1 + beta * x + .2 * w + .1 * v dfr0 <- dfr <- data.frame("group" = rep(1:G, each = n), "x" = x, "y" = y, "w" = w, "v" = v) dfr[rho.miss * x + rnorm(G * n, sd = sqrt(1 - rho.miss)) < qnorm(missrate), "y"] <- NA dfr[rep(rnorm(G), each = n) < qnorm(missrate), "w"] <- NA dfr[rep(rnorm(G), each = n) < qnorm(missrate), "v"] <- NA # empty mice imputation imp0 <- mice(as.matrix(dfr), maxit = 0) predM <- imp0$predictorMatrix impM <- imp0$method # multilevel imputation predM1 <- predM predM1[c("w", "y", "v"), "group"] <- -2 predM1["y", "x"] <- 1 # fixed x effects imputation impM1 <- impM impM1[c("y", "w", "v")] <- c("2l.pan", "2lonly.norm", "2lonly.pmm") # turn v into a categorical variable dfr$v <- as.factor(dfr$v) levels(dfr$v) <- LETTERS[1:4] # y ... imputation using pan # w ... imputation at level 2 using norm # v ... imputation at level 2 using pmm # skip imputation on solaris is.solaris <- function() grepl("SunOS", Sys.info()["sysname"]) if (!is.solaris()) { imp <- mice(dfr, m = 1, predictorMatrix = predM1, method = impM1, maxit = 1, paniter = 500 ) }
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.