Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

mice.impute.passive

Passive imputation


Description

Calculate new variable during imputation

Usage

mice.impute.passive(data, func)

Arguments

data

A data frame

func

A formula specifying the transformations on data

Details

Passive imputation is a special internal imputation function. Using this facility, the user can specify, at any point in the mice Gibbs sampling algorithm, a function on the imputed data. This is useful, for example, to compute a cubic version of a variable, a transformation like Q = W/H^2 based on two variables, or a mean variable like (x_1+x_2+x_3)/3. The so derived variables might be used in other places in the imputation model. The function allows to dynamically derive virtually any function of the imputed data at virtually any time.

Value

The result of applying formula

Author(s)

Stef van Buuren, Karin Groothuis-Oudshoorn, 2000

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1-67. https://www.jstatsoft.org/v45/i03/

See Also


mice

Multivariate Imputation by Chained Equations

v3.13.0
GPL-2 | GPL-3
Authors
Stef van Buuren [aut, cre], Karin Groothuis-Oudshoorn [aut], Gerko Vink [ctb], Rianne Schouten [ctb], Alexander Robitzsch [ctb], Patrick Rockenschaub [ctb], Lisa Doove [ctb], Shahab Jolani [ctb], Margarita Moreno-Betancur [ctb], Ian White [ctb], Philipp Gaffert [ctb], Florian Meinfelder [ctb], Bernie Gray [ctb], Vincent Arel-Bundock [ctb]
Initial release
2021-01-26

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.