Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

mice.impute.polyreg

Imputation of unordered data by polytomous regression


Description

Imputes missing data in a categorical variable using polytomous regression

Usage

mice.impute.polyreg(
  y,
  ry,
  x,
  wy = NULL,
  nnet.maxit = 100,
  nnet.trace = FALSE,
  nnet.MaxNWts = 1500,
  ...
)

Arguments

y

Vector to be imputed

ry

Logical vector of length length(y) indicating the the subset y[ry] of elements in y to which the imputation model is fitted. The ry generally distinguishes the observed (TRUE) and missing values (FALSE) in y.

x

Numeric design matrix with length(y) rows with predictors for y. Matrix x may have no missing values.

wy

Logical vector of length length(y). A TRUE value indicates locations in y for which imputations are created.

nnet.maxit

Tuning parameter for nnet().

nnet.trace

Tuning parameter for nnet().

nnet.MaxNWts

Tuning parameter for nnet().

...

Other named arguments.

Details

The function mice.impute.polyreg() imputes categorical response variables by the Bayesian polytomous regression model. See J.P.L. Brand (1999), Chapter 4, Appendix B.

By default, unordered factors with more than two levels are imputed by mice.impute.polyreg().

The method consists of the following steps:

  1. Fit categorical response as a multinomial model

  2. Compute predicted categories

  3. Add appropriate noise to predictions

The algorithm of mice.impute.polyreg uses the function multinom() from the nnet package.

In order to avoid bias due to perfect prediction, the algorithm augment the data according to the method of White, Daniel and Royston (2010).

Value

Vector with imputed data, same type as y, and of length sum(wy)

Author(s)

Stef van Buuren, Karin Groothuis-Oudshoorn, 2000-2010

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1-67. https://www.jstatsoft.org/v45/i03/

Brand, J.P.L. (1999) Development, implementation and evaluation of multiple imputation strategies for the statistical analysis of incomplete data sets. Dissertation. Rotterdam: Erasmus University.

White, I.R., Daniel, R. Royston, P. (2010). Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables. Computational Statistics and Data Analysis, 54, 2267-2275.

Venables, W.N. & Ripley, B.D. (2002). Modern applied statistics with S-Plus (4th ed). Springer, Berlin.

See Also


mice

Multivariate Imputation by Chained Equations

v3.13.0
GPL-2 | GPL-3
Authors
Stef van Buuren [aut, cre], Karin Groothuis-Oudshoorn [aut], Gerko Vink [ctb], Rianne Schouten [ctb], Alexander Robitzsch [ctb], Patrick Rockenschaub [ctb], Lisa Doove [ctb], Shahab Jolani [ctb], Margarita Moreno-Betancur [ctb], Ian White [ctb], Philipp Gaffert [ctb], Florian Meinfelder [ctb], Bernie Gray [ctb], Vincent Arel-Bundock [ctb]
Initial release
2021-01-26

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.