Datasets with various missing data patterns
Four simple datasets with various missing data patterns
Data with a univariate missing data pattern
Data with a monotone missing data pattern
Data with a file matching missing data pattern
Data with a general missing data pattern
Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman & Hall/CRC. Boca Raton, FL.
Van Buuren (2012) uses these four artificial datasets to illustrate various missing data patterns.
require(lattice) require(MASS) pattern4 data <- rbind(pattern1, pattern2, pattern3, pattern4) mdpat <- cbind(expand.grid(rec = 8:1, pat = 1:4, var = 1:3), r = as.numeric(as.vector(is.na(data)))) types <- c("Univariate", "Monotone", "File matching", "General") tp41 <- levelplot(r ~ var + rec | as.factor(pat), data = mdpat, as.table = TRUE, aspect = "iso", shrink = c(0.9), col.regions = mdc(1:2), colorkey = FALSE, scales = list(draw = FALSE), xlab = "", ylab = "", between = list(x = 1, y = 0), strip = strip.custom( bg = "grey95", style = 1, factor.levels = types ) ) print(tp41) md.pattern(pattern4) p <- md.pairs(pattern4) p ### proportion of usable cases p$mr / (p$mr + p$mm) ### outbound statistics p$rm / (p$rm + p$rr) fluxplot(pattern2)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.