Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

tbc

Terneuzen birth cohort


Description

Data of subset of the Terneuzen Birth Cohort data on child growth.

Format

tbs is a data frame with 3951 rows and 11 columns:

id

Person number

occ

Occasion number

nocc

Number of occasions

first

Is this the first record for this person? (TRUE/FALSE)

typ

Type of data (all observed)

age

Age (years)

sex

Sex 1=M, 2=F

hgt.z

Height Z-score

wgt.z

Weight Z-score

bmi.z

BMI Z-score

ao

Adult overweight (0=no, 1=yes)

tbc.target is a data frame with 2612 rows and 3 columns:

id

Person number

ao

Adult overweight (0=no, 1=yes)

bmi.z.jv

BMI Z-score as young adult (18-29 years)

Details

This tbc data set is a random subset of persons from a much larger collection of data from the Terneuzen Birth Cohort. The total cohort comprises of 2604 unique persons, whereas the subset in tbc covers 306 persons. The tbc.target is an auxiliary data set containing two outcomes at adult age. For more details, see De Kroon et al (2008, 2010, 2011). The imputation methodology is explained in Chapter 9 of Van Buuren (2012).

Source

De Kroon, M. L. A., Renders, C. M., Kuipers, E. C., van Wouwe, J. P., van Buuren, S., de Jonge, G. A., Hirasing, R. A. (2008). Identifying metabolic syndrome without blood tests in young adults - The Terneuzen birth cohort. European Journal of Public Health, 18(6), 656-660.

De Kroon, M. L. A., Renders, C. M., Van Wouwe, J. P., Van Buuren, S., Hirasing, R. A. (2010). The Terneuzen birth cohort: BMI changes between 2 and 6 years correlate strongest with adult overweight. PLoS ONE, 5(2), e9155.

De Kroon, M. L. A. (2011). The Terneuzen Birth Cohort. Detection and Prevention of Overweight and Cardiometabolic Risk from Infancy Onward. Dissertation, Vrije Universiteit, Amsterdam. https://research.vu.nl/en/publications/the-terneuzen-birth-cohort-detection-and-prevention-of-overweight

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman & Hall/CRC. Boca Raton, FL.

Examples

data <- tbc
md.pattern(data)

mice

Multivariate Imputation by Chained Equations

v3.13.0
GPL-2 | GPL-3
Authors
Stef van Buuren [aut, cre], Karin Groothuis-Oudshoorn [aut], Gerko Vink [ctb], Rianne Schouten [ctb], Alexander Robitzsch [ctb], Patrick Rockenschaub [ctb], Lisa Doove [ctb], Shahab Jolani [ctb], Margarita Moreno-Betancur [ctb], Ian White [ctb], Philipp Gaffert [ctb], Florian Meinfelder [ctb], Bernie Gray [ctb], Vincent Arel-Bundock [ctb]
Initial release
2021-01-26

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.