Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

data.allison

Datasets from Allison's Missing Data Book


Description

Datasets from Allison's missing data book (Allison 2002).

Usage

data(data.allison.gssexp)
data(data.allison.hip)
data(data.allison.usnews)

Format

  • Data data.allison.gssexp:

    'data.frame': 2991 obs. of 14 variables:
    $ AGE : num 33 59 NA 59 21 22 40 25 41 45 ...
    $ EDUC : num 12 12 12 8 13 15 9 12 12 12 ...
    $ FEMALE : num 1 0 1 0 1 1 1 0 1 1 ...
    $ SPANKING: num 1 1 2 2 NA 1 3 1 1 NA ...
    $ INCOM : num 11.2 NA 16.2 18.8 13.8 ...
    $ NOCHILD : num 0 0 0 0 1 1 0 0 0 0 ...
    $ NODOUBT : num NA NA NA 1 NA NA 1 NA NA 1 ...
    $ NEVMAR : num 0 0 0 0 1 1 0 1 0 0 ...
    $ DIVSEP : num 1 0 0 0 0 0 0 0 0 1 ...
    $ WIDOW : num 0 0 0 0 0 0 1 0 1 0 ...
    $ BLACK : num 1 1 1 0 1 1 0 1 1 1 ...
    $ EAST : num 1 1 1 1 1 1 1 1 1 1 ...
    $ MIDWEST : num 0 0 0 0 0 0 0 0 0 0 ...
    $ SOUTH : num 0 0 0 0 0 0 0 0 0 0 ...

  • Data data.allison.hip:

    'data.frame': 880 obs. of 7 variables:
    $ SID : num 1 1 1 1 2 2 2 2 9 9 ...
    $ WAVE: num 1 2 3 4 1 2 3 4 1 2 ...
    $ ADL : num 3 2 3 3 3 1 2 1 3 3 ...
    $ PAIN: num 0 5 0 0 0 1 5 NA 0 NA ...
    $ SRH : num 2 4 2 2 4 1 1 2 2 3 ...
    $ WALK: num 1 0 0 0 0 0 0 0 1 NA ...
    $ CESD: num 9 28 31 11.6 NA ...

  • Data data.allison.usnews:

    'data.frame': 1302 obs. of 7 variables:
    $ CSAT : num 972 961 NA 881 NA ...
    $ ACT : num 20 22 NA 20 17 20 21 NA 24 26 ...
    $ STUFAC : num 11.9 10 9.5 13.7 14.3 32.8 18.9 18.7 16.7 14 ...
    $ GRADRAT: num 15 NA 39 NA 40 55 51 15 69 72 ...
    $ RMBRD : num 4.12 3.59 4.76 5.12 2.55 ...
    $ PRIVATE: num 1 0 0 0 0 1 0 0 0 1 ...
    $ LENROLL: num 4.01 6.83 4.49 7.06 6.89 ...

Source

The datasets were downloaded from http://www.ats.ucla.edu/stat/examples/md/.

References

Allison, P. D. (2002). Missing data. Newbury Park, CA: Sage.

Examples

## Not run: 
#############################################################################
# EXAMPLE 1: Hip dataset | Imputation using a wide format
#############################################################################

# at first, the hip dataset is 'melted' for imputation

data(data.allison.hip)
  ##   head(data.allison.hip)
  ##     SID WAVE ADL PAIN SRH WALK   CESD
  ##   1   1    1   3    0   2    1  9.000
  ##   2   1    2   2    5   4    0 28.000
  ##   3   1    3   3    0   2    0 31.000
  ##   4   1    4   3    0   2    0 11.579
  ##   5   2    1   3    0   4    0     NA
  ##   6   2    2   1    1   1    0  2.222

library(reshape)
hip.wide <- reshape::reshape(data.allison.hip, idvar="SID", timevar="WAVE",
                direction="wide")
  ##   > head(hip.wide, 2)
  ##     SID ADL.1 PAIN.1 SRH.1 WALK.1 CESD.1 ADL.2 PAIN.2 SRH.2 WALK.2 CESD.2 ADL.3
  ##   1   1     3      0     2      1      9     2      5     4      0 28.000     3
  ##   5   2     3      0     4      0     NA     1      1     1      0  2.222     2
  ##     PAIN.3 SRH.3 WALK.3 CESD.3 ADL.4 PAIN.4 SRH.4 WALK.4 CESD.4
  ##   1      0     2      0     31     3      0     2      0 11.579
  ##   5      5     1      0     12     1     NA     2      0     NA

# imputation of the hip wide dataset
imp <- mice::mice( as.matrix( hip.wide[,-1] ), m=5, maxit=3 )
summary(imp)

## End(Not run)

miceadds

Some Additional Multiple Imputation Functions, Especially for 'mice'

v3.11-6
GPL (>= 2)
Authors
Alexander Robitzsch [aut,cre] (<https://orcid.org/0000-0002-8226-3132>), Simon Grund [aut] (<https://orcid.org/0000-0002-1290-8986>), Thorsten Henke [ctb]
Initial release
2021-01-21 11:48:47

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.