Creates Objects of Class datlist or nested.datlist
Creates objects of class datlist
or nested.datlist
.
The functions nested.datlist2datlist
and
datlist2nested.datlist
provide list conversions for imputed
datasets.
datlist_create(datasets) nested.datlist_create(datasets) ## S3 method for class 'datlist' print(x, ...) ## S3 method for class 'nested.datlist' print(x, ...) nested.datlist2datlist(datlist) datlist2nested.datlist(datlist, Nimp)
datasets |
For For |
x |
Object of classes |
datlist |
Object of classes |
Nimp |
Vector of length 2 containing numbers of between and within imputations. |
... |
Further arguments to be passed |
Object of class datlist
or nested.datlist
## Not run: ## The function datlist_create is currently defined as function (datasets) { class(datasets) <- "datlist" return(datasets) } ############################################################################# # EXAMPLE 1: Create object of class datlist ############################################################################# library(BIFIEsurvey) data(data.timss2, package="BIFIEsurvey" ) datlist <- data.timss2 # class datlist obj1 <- miceadds::datlist_create(data.timss2) ############################################################################# # EXAMPLE 2: Multiply imputed datasets: Different object classes ############################################################################# library(mice) data(nhanes2, package="mice") set.seed(990) # nhanes2 data imputation imp1 <- miceadds::mice.1chain( nhanes2, burnin=5, iter=25, Nimp=5 ) # object of class datlist imp2 <- miceadds::mids2datlist(imp1) # alternatively, one can use datlist_create imp2b <- miceadds::datlist_create(imp1) # object of class imputationList imp3 <- mitools::imputationList(imp2) # retransform object in class datlist imp2c <- miceadds::datlist_create(imp3) str(imp2c) ############################################################################# # EXAMPLE 3: Nested multiply imputed datasets ############################################################################# library(BIFIEsurvey) data(data.timss2, package="BIFIEsurvey" ) datlist <- data.timss2 # list of 5 datasets containing 5 plausible values #** define imputation method and predictor matrix data <- datlist[[1]] V <- ncol(data) # variables vars <- colnames(data) # variables not used for imputation vars_unused <- miceadds::scan.vec("IDSTUD TOTWGT JKZONE JKREP" ) #- define imputation method impMethod <- rep("norm", V ) names(impMethod) <- vars impMethod[ vars_unused ] <- "" #- define predictor matrix predM <- matrix( 1, V, V ) colnames(predM) <- rownames(predM) <- vars diag(predM) <- 0 predM[, vars_unused ] <- 0 # object of class nmi imp1 <- miceadds::mice.nmi( datlist, method=impMethod, predictorMatrix=predM, m=4, maxit=3 ) # object of class nested.datlist imp2 <- miceadds::mids2datlist(imp1) # object of class NestedImputationList imp3 <- miceadds::NestedImputationList(imp2) # redefine class nested.datlist imp4 <- miceadds::nested.datlist_create(imp3) ############################################################################# # EXAMPLE 4: Conversions between nested lists of datasets and lists of datasets ############################################################################# library(BIFIEsurvey) data(data.timss4, package="BIFIEsurvey" ) datlist <- data.timss4 # object of class nested.datlist datlist1a <- miceadds::nested.datlist_create(datlist) # object of class NestedImputationList datlist1b <- miceadds::NestedImputationList(datlist) # conversion to datlist datlist2a <- miceadds::nested.datlist2datlist(datlist1a) # class datlist datlist2b <- miceadds::nested.datlist2datlist(datlist1b) # class imputationList # convert into a nested list with 2 between nests and 10 within nests datlist3a <- miceadds::datlist2nested.datlist(datlist2a, Nimp=c(2,10) ) datlist3b <- miceadds::datlist2nested.datlist(datlist2b, Nimp=c(4,5) ) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.