Statistical Inference for Fixed and Random Structure for Fitted Models in lme4
The function lmer_vcov
conducts statistical inference for
fixed coefficients and standard deviations
and correlations of random effects structure of models fitted in the
lme4 package.
The function lmer_pool
applies the Rubin formula for inference
for fitted lme4 models for multiply imputed datasets.
lmer_vcov(object, level=.95, use_reml=FALSE, ...) ## S3 method for class 'lmer_vcov' summary(object, digits=4, file=NULL, ...) ## S3 method for class 'lmer_vcov' coef(object, ...) ## S3 method for class 'lmer_vcov' vcov(object, ...) lmer_vcov2(object, level=.95, ...) lmer_pool( models, level=.95, ...) ## S3 method for class 'lmer_pool' summary(object, digits=4, file=NULL, ...) lmer_pool2( models, level=.95, ...)
object |
Fitted object in lme4 |
level |
Confidence level |
use_reml |
Logical indicating whether REML estimates should be used for variance components (if provided) |
digits |
Number of digits used for rounding in summary |
file |
Optional file name for sinking output |
models |
List of models fitted in lme4 for a multiply imputed dataset |
... |
Further arguments to be passed |
List with several entries:
par_summary |
Parameter summary |
coef |
Estimated parameters |
vcov |
Covariance matrix of estimates |
... |
Further values |
Function originally from Ben Bolker, http://rpubs.com/bbolker/varwald
## Not run: ############################################################################# # EXAMPLE 1: Single model fitted in lme4 ############################################################################# library(lme4) data(data.ma01, package="miceadds") dat <- na.omit(data.ma01) #* fit multilevel model formula <- math ~ hisei + miceadds::gm( books, idschool ) + ( 1 + books | idschool ) mod1 <- lme4::lmer( formula, data=dat, REML=FALSE) summary(mod1) #* statistical inference res1 <- miceadds::lmer_vcov( mod1 ) summary(res1) coef(res1) vcov(res1) ############################################################################# # EXAMPLE 2: lme4 model for multiply imputed dataset ############################################################################# library(lme4) data(data.ma02, package="miceadds") datlist <- miceadds::datlist_create(data.ma02) #** fit lme4 model for all imputed datasets formula <- math ~ hisei + miceadds::gm( books, idschool ) + ( 1 | idschool ) models <- list() M <- length(datlist) for (mm in 1:M){ models[[mm]] <- lme4::lmer( formula, data=datlist[[mm]], REML=FALSE) } #** statistical inference res1 <- miceadds::lmer_pool(models) summary(res1) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.