Imputation of a Linear Model by Bayesian Bootstrap
Parameters of the model are estimated by Bayesian bootstrap. Predicted values are computed and residuals are randomly drawn from the empirical distribution of residuals of observed data.
mice.impute.lm(y, ry, x, wy=NULL, lm_args=NULL, trafo=NULL, antitrafo=NULL, ...) mice.impute.rlm(y, ry, x, wy=NULL, lm_args=NULL, trafo=NULL, antitrafo=NULL, ...) mice.impute.lqs(y, ry, x, wy=NULL, lm_args=NULL, trafo=NULL, antitrafo=NULL, ...) mice.impute.lm_fun(y, ry, x, wy=NULL, lm_args=NULL, lm_fun="lm", trafo=NULL, antitrafo=NULL, ...)
y |
Incomplete data vector of length |
ry |
Vector of missing data pattern ( |
x |
Matrix ( |
wy |
Vector of logicals indicating which entries should be imputed |
lm_args |
List of arguments for |
lm_fun |
Linear regression fitting function, e.g. |
trafo |
Optional function for transforming the outcome values |
antitrafo |
Optional function which is the inverse function of |
... |
Further arguments to be passed |
A vector of length nmis=sum(!ry)
with imputed values.
## Not run: ############################################################################# # EXAMPLE 1: Some toy example illustrating the methods ############################################################################# library(MASS) library(mice) #-- simulate data set.seed(98) N <- 1000 x <- stats::rnorm(N) z <- 0.5*x + stats::rnorm(N, sd=.7) y <- stats::rnorm(N, mean=.3*x - .2*z, sd=1 ) dat <- data.frame(x,z,y) dat[ seq(1,N,3), c("x","y") ] <- NA dat[ seq(1,N,4), "z" ] <- NA #-- define imputation methods imp <- mice::mice(dat, maxit=0) method <- imp$method method["x"] <- "rlm" method["z"] <- "lm" method["y"] <- "lqs" #-- impute data imp <- mice::mice(dat, method=method) summary(imp) #--- example using transformations dat1$x <- exp(dat1$x) dat1$z <- stats::plogis(dat1$z) trafo <- list(x=log, z=stats::qlogis) antitrafo <- list(x=exp, z=stats::plogis) #- impute with transformations imp2 <- mice::mice(dat1, method=method, m=1, maxit=3, trafo=trafo, antitrafo=antitrafo) print(imp2) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.