Principal Component Analysis with Ridge Regularization
Performs a principal component analysis for a dataset while a ridge parameter is added on the diagonal of the covariance matrix.
pca.covridge(x, ridge=1E-10, wt=NULL )
x |
A numeric matrix |
ridge |
Ridge regularization parameter for the covariance matrix |
wt |
Optional vector of weights |
A list with following entries:
loadings |
Matrix of factor loadings |
scores |
Matrix of principal component scores |
sdev |
Vector of standard deviations of factors (square root of eigenvalues) |
Principal component analysis in stats:
stats::princomp
For calculating first eigenvalues of a symmetric matrix see also
sirt::sirt_eigenvalues
in the sirt package.
## Not run: ############################################################################# # EXAMPLE 1: PCA on imputed internet data ############################################################################# library(mice) data(data.internet) dat <- as.matrix( data.internet) # single imputation in mice imp <- mice::mice( dat, m=1, maxit=10 ) # apply PCA pca.imp <- miceadds::pca.covridge( complete(imp) ) ## > pca.imp$sdev ## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 ## 3.0370905 2.3950176 2.2106816 2.0661971 1.8252900 1.7009921 1.6379599 # compare results with princomp pca2.imp <- stats::princomp( complete(imp) ) ## > pca2.imp ## Call: ## stats::princomp(x=complete(imp)) ## ## Standard deviations: ## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 ## 3.0316816 2.3907523 2.2067445 2.0625173 1.8220392 1.6979627 1.6350428 ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.