Compute profiled-likelihood (or posterior) confidence intervals
Computes profiled-likelihood based confidence intervals. Supports the inclusion of equality constraints. Object returns the confidence intervals and whether the respective interval could be found.
PLCI.mirt( mod, parnum = NULL, alpha = 0.05, search_bound = TRUE, step = 0.5, lower = TRUE, upper = TRUE, inf2val = 30, NealeMiller = FALSE, ... )
mod |
a converged mirt model |
parnum |
a numeric vector indicating which parameters to estimate.
Use |
alpha |
two-tailed alpha critical level |
search_bound |
logical; use a fixed grid of values around the ML estimate to determine more suitable optimization bounds? Using this has much better behaviour than setting fixed upper/lower bound values and searching from more extreme ends |
step |
magnitude of steps used when |
lower |
logical; search for the lower CI? |
upper |
logical; search for the upper CI? |
inf2val |
a numeric used to change parameter bounds which are infinity to a finite number. Decreasing this too much may not allow a suitable bound to be located. Default is 30 |
NealeMiller |
logical; use the Neale and Miller 1997 approximation? Default is |
... |
additional arguments to pass to the estimation functions |
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi: 10.18637/jss.v048.i06
Chalmers, R. P., Pek, J., & Liu, Y. (2017). Profile-likelihood Confidence Intervals in Item Response Theory Models. Multivariate Behavioral Research, 52, 533-550. doi: 10.1080/00273171.2017.1329082
Neale, M. C. & Miller, M. B. (1997). The use of likelihood-based confidence intervals in genetic models. Behavior Genetics, 27, 113-120.
## Not run: mirtCluster() #use all available cores to estimate CI's in parallel dat <- expand.table(LSAT7) mod <- mirt(dat, 1) result <- PLCI.mirt(mod) result # model with constraints mod <- mirt(dat, 'F = 1-5 CONSTRAIN = (1-5, a1)') result <- PLCI.mirt(mod) result mod2 <- mirt(Science, 1) result2 <- PLCI.mirt(mod2) result2 #only estimate CI's slopes sv <- mod2values(mod2) parnum <- sv$parnum[sv$name == 'a1'] result3 <- PLCI.mirt(mod2, parnum) result3 ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.