Compare nested models with likelihood-based statistics
Compare nested models using likelihood ratio test (X2), Akaike Information Criterion (AIC), sample size adjusted AIC (AICc), Bayesian Information Criterion (BIC), Sample-Size Adjusted BIC (SABIC), and Hannan-Quinn (HQ) Criterion.
## S4 method for signature 'SingleGroupClass' anova(object, object2, bounded = FALSE, mix = 0.5, verbose = TRUE)
object |
an object of class |
object2 |
a second model estimated from any of the mirt package estimation methods |
bounded |
logical; are the two models comparing a bounded parameter (e.g., comparing a single
2PL and 3PL model with 1 df)? If |
mix |
proportion of chi-squared mixtures. Default is 0.5 |
verbose |
logical; print additional information to console? |
a data.frame
/mirt_df
object
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi: 10.18637/jss.v048.i06
## Not run: x <- mirt(Science, 1) x2 <- mirt(Science, 2) anova(x, x2) # in isolation anova(x) # bounded parameter dat <- expand.table(LSAT7) mod <- mirt(dat, 1) mod2 <- mirt(dat, 1, itemtype = c(rep('2PL', 4), '3PL')) anova(mod, mod2) #unbounded test anova(mod, mod2, bounded = TRUE) #bounded # priors model <- 'F = 1-5 PRIOR = (5, g, norm, -1, 1)' mod1b <- mirt(dat, model, itemtype = c(rep('2PL', 4), '3PL')) anova(mod1b) model2 <- 'F = 1-5 PRIOR = (1-5, g, norm, -1, 1)' mod2b <- mirt(dat, model2, itemtype = '3PL') anova(mod1b, mod2b) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.