Create a user defined group-level object with correct generic functions
Initializes the proper S4 class and methods necessary for mirt functions to use in estimation for defining
customized group-level functions. To use the defined objects pass to the
mirt(..., customGroup = OBJECT)
command, and ensure that the class parameters are properly labeled.
createGroup( par, est, den, nfact, standardize = FALSE, gr = NULL, hss = NULL, gen = NULL, lbound = NULL, ubound = NULL, derivType = "Richardson" )
par |
a named vector of the starting values for the parameters |
est |
a logical vector indicating which parameters should be freely estimated by default |
den |
the probability density function given the Theta/ability values.
First input contains a vector of all the defined parameters and the second input
must be a matrix called |
nfact |
number of factors required for the model. E.g., for unidimensional models with only one
dimension of integration |
standardize |
logical; use standardization of the quadrature table method proposed by
Woods and Thissen (2006)? If TRUE, the logical elements named |
gr |
gradient function (vector of first derivatives) of the log-likelihood used in
estimation. The function must be of the form |
hss |
Hessian function (matrix of second derivatives) of the log-likelihood used in
estimation. If not specified a numeric approximation will be used.
The input is identical to the |
gen |
a function used when |
lbound |
optional vector indicating the lower bounds of the parameters. If not specified then the bounds will be set to -Inf |
ubound |
optional vector indicating the lower bounds of the parameters. If not specified then the bounds will be set to Inf |
derivType |
if the |
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi: 10.18637/jss.v048.i06
# normal density example, N(mu, sigma^2) den <- function(obj, Theta) dnorm(Theta, obj@par[1], sqrt(obj@par[2])) par <- c(mu = 0, sigma2 = .5) est <- c(FALSE, TRUE) lbound <- c(-Inf, 0) grp <- createGroup(par, est, den, nfact = 1, lbound=lbound) dat <- expand.table(LSAT6) mod <- mirt(dat, 1, 'Rasch') modcustom <- mirt(dat, 1, 'Rasch', customGroup=grp) coef(mod) coef(modcustom)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.