Compute model residuals
Return model implied residuals for linear dependencies between items or at the person level.
If the latent trait density was approximated (e.g., Davidian curves, Empirical histograms, etc)
then passing use_dentype_estimate = TRUE
will use the internally saved quadrature and
density components (where applicable).
## S4 method for signature 'SingleGroupClass' residuals( object, type = "LD", df.p = FALSE, full.scores = FALSE, QMC = FALSE, printvalue = NULL, tables = FALSE, verbose = TRUE, Theta = NULL, suppress = 1, theta_lim = c(-6, 6), quadpts = NULL, fold = TRUE, technical = list(), ... )
object |
an object of class |
type |
type of residuals to be displayed.
Can be either |
df.p |
logical; print the degrees of freedom and p-values? |
full.scores |
logical; compute relevant statistics for each subject in the original data? |
QMC |
logical; use quasi-Monte Carlo integration? If |
printvalue |
a numeric value to be specified when using the |
tables |
logical; for LD type, return the observed, expected, and standardized residual tables for each item combination? |
verbose |
logical; allow information to be printed to the console? |
Theta |
a matrix of factor scores used for statistics that require empirical estimates (i.e., Q3).
If supplied, arguments typically passed to |
suppress |
a numeric value indicating which parameter local dependency combinations to flag as being too high. Absolute values for the standardized estimates greater than this value will be returned, while all values less than this value will be set to NA |
theta_lim |
range for the integration grid |
quadpts |
number of quadrature nodes to use. The default is extracted from model (if available) or generated automatically if not available |
fold |
logical; apply the sum 'folding' described by Edwards et al. (2018) for the JSI statistic? |
technical |
list of technical arguments when models are re-estimated (see |
... |
additional arguments to be passed to |
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi: 10.18637/jss.v048.i06
Chen, W. H. & Thissen, D. (1997). Local dependence indices for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265-289.
Edwards, M. C., Houts, C. R. & Cai, L. (2018). A Diagnostic Procedure to Detect Departures From Local Independence in Item Response Theory Models. Psychological Methods, 23, 138-149.
Yen, W. (1984). Effects of local item dependence on the fit and equating performance of the three parameter logistic model. Applied Psychological Measurement, 8, 125-145.
## Not run: x <- mirt(Science, 1) residuals(x) residuals(x, tables = TRUE) residuals(x, type = 'exp') residuals(x, suppress = .15) residuals(x, df.p = TRUE) # Pearson's X2 estimate for goodness-of-fit full_table <- residuals(x, type = 'expfull') head(full_table) X2 <- with(full_table, sum((freq - exp)^2 / exp)) df <- nrow(full_table) - extract.mirt(x, 'nest') - 1 p <- pchisq(X2, df = df, lower.tail=FALSE) data.frame(X2, df, p, row.names='Pearson-X2') # above FOG test as a function PearsonX2 <- function(x){ full_table <- residuals(x, type = 'expfull') X2 <- with(full_table, sum((freq - exp)^2 / exp)) df <- nrow(full_table) - extract.mirt(x, 'nest') - 1 p <- pchisq(X2, df = df, lower.tail=FALSE) data.frame(X2, df, p, row.names='Pearson-X2') } PearsonX2(x) # extract results manually out <- residuals(x, df.p = TRUE, verbose=FALSE) str(out) out$df.p[1,2] # with and without supplied factor scores Theta <- fscores(x) residuals(x, type = 'Q3', Theta=Theta) residuals(x, type = 'Q3', method = 'ML') # Edwards et al. (2018) JSI statistic N <- 250 a <- rnorm(10, 1.7, 0.3) d <- rnorm(10) dat <- simdata(a, d, N=250, itemtype = '2PL') mod <- mirt(dat, 1) residuals(mod, type = 'JSI') residuals(mod, type = 'JSI', fold=FALSE) # unfolded # LD between items 1-2 aLD <- numeric(10) aLD[1:2] <- rnorm(2, 2.55, 0.15) a2 <- cbind(a, aLD) dat <- simdata(a2, d, N=250, itemtype = '2PL') mod <- mirt(dat, 1) # JSI executed in parallel over multiple cores mirtCluster() residuals(mod, type = 'JSI') ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.