Nonparametric Missing Value Imputation using Random Forest
'missForest' is used to impute missing values particularly in the case of mixed-type data. It can be used to impute continuous and/or categorical data including complex interactions and nonlinear relations. It yields an out-of-bag (OOB) imputation error estimate. Moreover, it can be run parallel to save computation time.
Package: | missForest |
Type: | Package |
Version: | 1.4 |
Date: | 2013-12-31 |
License: | GPL (>= 2) |
LazyLoad: | yes |
The main function of the package is missForest
implementing the
nonparametric missing value imputation. See missForest
for more
details.
Daniel J. Stekhoven, stekhoven@stat.math.ethz.ch
Stekhoven, D.J. and Buehlmann, P. (2012), 'MissForest - nonparametric missing value imputation for mixed-type data', Bioinformatics, 28(1) 2012, 112-118, doi: 10.1093/bioinformatics/btr597
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.