Best linear approximation with respect to the mean square error (theoretical linear regression).
For a random vector X = (X[1], …, X[p])' for which a mean and a covariance matrix are given computes coefficients of the best linear approximations with respect to the mean square error of each component of X given the remaining components of X.
BLA(mean=c(0, 0), Sigma=diag(2))
mean |
a numeric vector of means. |
Sigma |
a covariance matrix. |
A list with the following components:
beta |
computed regression coefficients |
sigmaR2 |
residual variances |
Arnošt Komárek arnost.komarek[AT]mff.cuni.cz
Anděl, J. (2007, odd. 2.5). Základy matematické statistiky. Praha: MATFYZPRESS.
##### X = (U(1), U(2), U(3))' ##### * U(1) <= U(2) <= U(3) ##### * ordered uniform Unif(0, 1) variates EX <- (1:3)/4 varX <- matrix(c(3,2,1, 2,4,2, 1,2,3), ncol=3)/80 BLA(EX, Sigma=varX) ##### Uroda sena ##### * Y1 = uroda sena [cent/akr] ##### * Y2 = jarni srazky [palce] ##### * Y3 = kumulovana teplota nad 42 F EY <- c(28.02, 4.91, 28.7) varY <- matrix(c(19.54, 3.89, -3.76, 3.89, 1.21, -1.31, -3.76, -1.31, 4.52), ncol=3) BLA(EY, Sigma=varY) ##### Z=(X, Y) ~ uniform distribution on a triangle ##### M = {(x,y): x>=0, y>=0, x+y<=3} EZ <- c(1, 1) varZ <- matrix(c(2, -1, -1, 2), nrow=2)/4 BLA(EZ, Sigma=varZ) ##### W=(X, Y) ~ uniform distribution on ##### M = {(x,y): x>=0, 0<=y<=1, y<=x<=y+1} EW <- c(1, 1/2) varW <- matrix(c(2, 1, 1, 1), nrow=2)/12 BLA(EW, Sigma=varW)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.