Calculate module eigengenes.
Calculates module eigengenes (1st principal component) of modules in a given single dataset.
moduleEigengenes(expr, colors, impute = TRUE, nPC = 1, align = "along average", excludeGrey = FALSE, grey = ifelse(is.numeric(colors), 0, "grey"), subHubs = TRUE, trapErrors = FALSE, returnValidOnly = trapErrors, softPower = 6, verbose = 0, indent = 0)
expr |
Expression data for a single set in the form of a data frame where rows are samples and columns are genes (probes). |
colors |
A vector of the same length as the number of probes in |
impute |
If |
nPC |
Number of principal components and variance explained entries to be calculated. Note
that only the first principal component is returned; the rest are used only for the calculation of
proportion of variance explained. The number of returned variance explained entries is
currently |
align |
Controls whether eigengenes, whose orientation is undetermined, should be aligned with
average expression ( |
excludeGrey |
Should the improper module consisting of 'grey' genes be excluded from the eigengenes? |
grey |
Value of |
subHubs |
Controls whether hub genes should be substituted for missing eigengenes. If
|
trapErrors |
Controls handling of errors from that may arise when there are too many
|
returnValidOnly |
Boolean. Controls whether the returned data frame of module eigengenes
contains columns
corresponding only to modules whose eigengenes or hub genes could be calculated correctly
( |
softPower |
The power used in soft-thresholding the adjacency matrix. Only used when the hubgene approximation is necessary because the principal component calculation failed. It must be non-negative. The default value should only be changed if there is a clear indication that it leads to incorrect results. |
verbose |
Controls verbosity of printed progress messages. 0 means silent, up to (about) 5 the verbosity gradually increases. |
indent |
A single non-negative integer controlling indentation of printed messages. 0 means no indentation, each unit above that adds two spaces. |
Module eigengene is defined as the first principal component of the expression matrix of the
corresponding module. The calculation may fail if the expression data has too many missing entries.
Handling of such errors is controlled by the arguments subHubs
and
trapErrors
.
If subHubs==TRUE
, errors in principal component calculation will be trapped and a substitute
calculation of hubgenes will be attempted. If this fails as well, behaviour depends on
trapErrors
: if TRUE
, the offending
module will be ignored and the return value will allow the user to remove the module from further
analysis; if FALSE
, the function will stop.
From the user's point of view, setting trapErrors=FALSE
ensures that if the function returns
normally, there will be a valid eigengene (principal component or hubgene) for each of the input
colors. If the user sets trapErrors=TRUE
, all calculational (but not input) errors will be
trapped, but the user should check the output (see below) to make sure all modules have a valid
returned eigengene.
While the principal component calculation can fail even on relatively sound data
(it does not take all that many "well-placed" NA
to torpedo the
calculation),
it takes many more irregularities in the data for the hubgene calculation to
fail. In fact such a failure signals there likely is something seriously wrong with the data.
A list with the following components:
eigengenes |
Module eigengenes in a dataframe, with each column corresponding to one eigengene.
The columns are named by the corresponding color with an |
averageExpr |
If |
varExplained |
A dataframe in which each column corresponds to a module, with the component
|
nPC |
A copy of the input |
validMEs |
A boolean vector. Each component (corresponding to the columns in |
validColors |
A copy of the input colors with entries corresponding to invalid modules set to
|
allOK |
Boolean flag signalling whether all eigengenes have been calculated correctly, either as principal components or as the hubgene average approximation. |
allPC |
Boolean flag signalling whether all returned eigengenes are principal components. |
isPC |
Boolean vector. Each component (corresponding to the columns in |
isHub |
Boolean vector. Each component (corresponding to the columns in |
validAEs |
Boolean vector. Each component (corresponding to the columns in |
allAEOK |
Boolean flag signalling whether all returned module average expressions contain
valid data. Note that |
Steve Horvath SHorvath@mednet.ucla.edu, Peter Langfelder Peter.Langfelder@gmail.com
Zhang, B. and Horvath, S. (2005), "A General Framework for Weighted Gene Co-Expression Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1, Article 17
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.