Fit detection function using key-adjustment functions
Fit detection function to observed distances using the key-adjustment
function approach. If adjustment functions are included it will alternate
between fitting parameters of key and adjustment functions and then all
parameters much like the approach in the CDS and MCDS Distance FORTRAN code.
To do so it calls detfct.fit.opt
which uses the R optim function
which does not allow non-linear constraints so inclusion of adjustments does
allow the detection function to be non-monotone.
detfct.fit(ddfobj, optim.options, bounds, misc.options)
ddfobj |
detection function object |
optim.options |
control options for optim |
bounds |
bounds for the parameters |
misc.options |
miscellaneous options |
fitted detection function model object with the following list structure
par |
final parameter vector |
value |
final negative log likelihood value |
counts |
number of function evaluations |
convergence |
see codes in optim |
message |
string about convergence |
hessian |
hessian evaluated at final parameter values |
aux |
a list with 20 elements
|
Dave Miller; Jeff Laake
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.